

CHEMISTRY

PAPER 1 3051/1

Wednesday

18 MAY 2016

12:00 NOON-1:15 P.M.

Additional materials: None

MINISTRY OF EDUCATION NATIONAL EXAMINATIONS

BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION

INSTRUCTIONS AND INFORMATION TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your school number, candidate number, surname and initials in the spaces provided above.

Answer ALL the questions on this paper.

For each question in this paper, four suggested answers A, B, C and D are given.

Circle the letter of the response which you consider to be correct.

Attempt ALL the questions. Marks will NOT be deducted for wrong answers. Your total score on this test will be the number of correct answers given.

Relative atomic masses are given in the Periodic Table of elements provided on page 2.

The volume of one mole of gas at room temperature and pressure (r.t.p.) is 24 000 cm³ and at standard temperature and pressure (s.t.p.) is 22 400 cm³.

For Examiner's Use

TOTAL MARKS

The Periodic Table of the Elements

	0	He Heisen	11 12 14 16 19 20 B Ne Boon 6 Carbon 7 Natrogen 8 Phonne 10 Neon 10 Ne	28 31 32 35.5 Si P S CI Sidom Phosphorus 16 3diplur 17 Chlorine	55 70 73 75 79 80 Zn Ga Ge As Se Br 30 31 32 Arsenic Selentium Biomine 31 32 34 35 35	112 115 119 122 128 127 Cd In Sn Sh Te I Redmium Indum 50 Transmory Tethurum Isodnia 48 49 50 51 52 53 Isodnia	201 204 207 209 Hg TI Pb Bi Po At Mercury Thallium Lead Barnuth Polonium Assistor	80 81 82 83 84 85
	-			20 02	e E	28 1. .e		
			80	16 50%	N all W	T Tellu	P 00 P	
	>			31 Phosphoru 15	As Arsenic 33	Sb Antimony 51	209 Bi Bismuth	
	2		Carbon 6	Si Sikon	73 Ge Germanlum 32	SS	207 Pb	
	=		11 B Boren	Aluminum Aluminum 13	70 Ga Galfum 31	I15 In Indum 49	204 TI Thathum 81	
					Sn Zn Zn Znc	Cd Cadmium A8	Hg Mercury 80	
					Cu Copper	Ag Sheet	197 Au Gold	
Group					S9 Nickel	Pd Patadium	Pt Patrium 78	
Ď					59 Co 27	103 Rh Phodium 45	192 Ir Indom	
		H Hydrogen			56 Fe km			
					SS Min Manganesa 25	Tc Technetium 43	186 Re Rhenium 75	
					S2 Cr Chromiom 24	96 Molybdenum 42	W Tungsten 74	
					S1 V Vanadrum 23	Noblem Noblem	Tanahum 73	
					48 Ti Triamium 22	2r Zrcontum 40	178 Hf Hatmum 72	
					Sc Scandium 21	89 Y Yrtthom 39	La Lantenom S7	
	=		Beryfum 4	24 Mg Magnesium 12	Calcorn Calcorn 20	Sr Strontium	Ba Barium Se	
					E		f	

noid series	140	141	144			152		159	162	165	167	169	173	175
noid series	Ce	Pr	PN	Pm		Eu		Tb	Dy	Ho	Щ	E	Ϋ́	1.1
20102	Cerium 58	Praseodymium 59	Neodymium 60	Promethium 61	Samarium 62	Europium 63	Gadolinium 64	Terbium 65	Dysprosium 66	Holmium 67	Erbrum 68	Thulum	Ytterbium	Lufebun
a = relative atomic mass	232		238											
X = atomic symbol	Th	Pa	n	Np	_	Am		Bk	č	Es	Fm	N	N	
b = proton (atomic) number	Thorium 90	Protactinism 91	Uranium 92	Neptunium 93	Putonium 94	Americium 95	Curium 96	Berkeforn 97	Catifornum 98	Einsteinium 99	Fermium 100	Mendelevium 101	Nobelium 102	Liwrencum 103
											-			000

• ×

1. What is the name of a group of chemicals that speed up a chemical reaction?

A catalysts

B galvanizers

C oxidising agents

D reducing agents

The diagram represents a scale found on a centimetre rule.

What is the value indicated by the arrow?

		in the	minute	and parels	minute	minuli	mann	minent	minute		ujun
0 cm	1	2	3	4	5	6	7	0	0	110	1.

A 0.41 cm

B 0.42 cm

C 4.10 cm

D 4.20 cm

The reading on a thermometer indicates the temperature of a boiling liquid is 101°C.

Which liquid could the thermometer have been placed in?

	liquid	purity
Α	ethanol	pure
В	methane	pure
С	propane	impure
D	water	impure

4. A sample of water is heated from −10°C to 110°C in a 15 minute period.

How many single states of matter and how many mixed states of matter will the water undergo?

	single states	mixed states
A	2	5
В	2	3
С	3	2
	2	0

5.	How	is the number of neutrons determined for any atom?
	A	adding the number of protons to the mass number
	В	doubling the atomic number
		le the number of electrons
	C	subtracting the number of protons from the mass number
	D	Subtracting the number of protess
		: application 2, 8, 3 be found?
6.	When	e on the Periodic Table would the element with the electronic configuration 2, 8, 3 be found?
0,	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	A	Group II
	В	Group VIII/0
	C	Period 3
	D	Second Period and Group III
	D	Second remodulate crosp
		2 14 electrons?
7.	In the	Bohr model of an atom, how many orbits are needed to hold silicon's 14 electrons?
7.	III tilk	, Dolla Model of the
	A	1
	В	2
	C	3
		4
	D	
8.	Carbo	on dioxide molecules with slightly different masses have been found.
	Whic	h factor accounts for this mass variation?
	A	allotropes
	В	isomers
	C	isotopes
		states of matter
	D	States of Matter
	****	is the total number of electrons found in a water molecule?
9.	What	is the total number of electrons
	Α	2
	В	8
	C	10
	D	18
	D	

- 16. What is the molecular formula of a compound with the structural formula CH₃CH₂CH₃?
 - A CH
 - B 3C₈H
 - $C C_3H_8$
 - D $(CH_3)_2CH_2$
- 17. How many moles of oxygen gas are needed to balance the combustion reaction of one mole of butane?

$$C_4H_{10} + \underline{X}O_2 \longrightarrow 4CO_2 + 5H_2O$$

- A 1/2
- B 5
- C 6½
- D 9
- 18. What is the molecular formula of a hydrocarbon with an empirical formula of CH_3 and an M_r of 30?
 - A CH₃
 - B C_2H_6
 - C C_3H_8
 - D C₄H₁₀
- 19. Hydrogen bromide gas dissolves in a liquid and ionises to produce hydrogen ions as the only positive ions in a liquid.

Which liquid causes hydrogen bromide gas to ionise?

- A acetone
- B methylbenzene
- C toluene
- D water
- 20. Which statement about an acid is true?
 - A forms water with an alkali
 - B pH is >7
 - C forms negatively charged hydronium ions in water
 - D is a non-electrolyte

21. When copper reacts with hot concentrated sulfuric acid it produces copper sulfate.

Which other products are formed?

- A hydrogen gas only
- B water only
- C water and sulfur dioxide gas
- D water and hydrogen gas
- 22. Which salt remains when a solution of H₂SO₄ is titrated with a solution of Ca(OH)₂?
 - A calcium hydroxide
 - B calcium oxide
 - C calcium sulfate
 - D calcium sulfite
- 23. The table shows the colours that Universal Indicator becomes when added to four different solutions.

Which row in the table correctly matches the colour of the indicator and the solution?

	name of solution	colour of Universal Indicator
A	nitric acid	blue
В	potassium nitrate	green
С	sodium hydroxide	yellow
D	ammonia solution	red

- 24. Which ion is indicated by a blue-green colour in a firework display?
 - A Cu²⁺
 - B Ba²⁺
 - C Na⁺
 - D Ca²⁺

Use the list of gases to answer questions 25, 26 and 27. The choices can be used once, more

not at a	11.						
	A B C D	ammonia hydrogen chloride sulfur dioxide chlorine					
Which a	gas						
25.	turns n	moist red litmus blue;	A	В	С	D	
26.	forms	dense white fumes with ammonia gas;	A	В	С	D	
27.	turns n	noist blue litmus red and then bleaches it?	A	В	C	D	
28.	What i	is the name of the process by which electricity	is used	to bri	ng abo	out a che	emical
	A	corrosion					
	В	electrolysis					
	C	oxidation					
	D	voltage					
29.	Which	change occurs to the ion at the anode during e	electroly	sis?			
	A	reduction					
	В	oxidation					
	C	gains electrons					
	D	gains mass					
30.	This re	eaction is part of the contact process.					
		$2SO_2 + O_2 \rightleftharpoons 2SO$)2				
	What h	nappens if the amount of SO ₂ is increased?	3				

O₂ increases and SO₃ increases O₂ decreases and SO₃ decreases

O₂ increases and SO₃ decreases O₂ decreases and SO₃ increases

A B

C D

A	A covalent					
В						
C						
D						
Which typ	pe of bond is formed when					
	ydrogen and oxygen bond to form water	er; A.	В	С	D	
11. th	ne lattice structure of NaCl is formed;	A.	В	С	D	
12. ar	mmonia hondo with a family 1					
	mmonia bonds with a fourth hydrogen o form the ammonium ion?	A	В	С	D	
13. W	That is the amount in moles, of NaOH, t	Found in 22 ~ at	CN-OI	0		
		odila ili 32 g 01	NaOF	. (
A						
В						
C D						
14. W	hat is the relative molecular mass of H ₂	SO ₄ ?				
A	3					
В	7					
C	48					
D	98					
5. WI	hich element can be found in the form of	of a diamond?				
A	carbon					
В	krypton					

C

D

potassium

silver

31.	What	is a change in concentration of either a reactant or product over a period of time called?
	A B C D	reaction rate reactant concentration product concentration state change
32.		s less reactive than magnesium. s the reactivity relationship between zinc and magnesium?

- A Magnesium can displace zinc ions from zinc compounds.
- B Zinc can displace magnesium from magnesium compounds.
- C Magnesium is lower than zinc in the reactivity series.
- D Zinc is a stronger reducing agent than magnesium.
- 33. Which of these statements does **not** describe what happens during a redox oxidation?
 - A a decrease in oxidation number
 - B a loss of protons
 - C a gain of oxygen
 - D a loss of hydrogen by a covalent molecule

Use the table to answer questions 34 and 35.

The table shows the products formed at the anode and the cathode during electrolysis.

	compound electrolysed	product at carbon anode	product at carbon cathode
A	molten lead bromide	bromine	lead
В	potassium nitrate solution	oxygen	hydrogen
C	concentrated sodium chloride solution	oxygen	hydrogen
D	copper sulfate solution	oxygen	copper

Which row in the table shows an

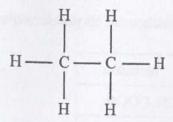
34.	incorrect product at one of the electrodes;	A	В	C	D
			1		

36. Magnesium metal is made by the electrolysis of molten
$$MgCl_2$$
. One of the half-reactions is shown.

$$Mg^{2+} + 2e^- \longrightarrow Mg$$

Which statement about the electrolysis of molten MgCl₂ is correct?

A	magnesium	ic	made	at	the	cathode
A	magnesium	19	mauc	aı	HIL	camouc.


37. Which pollution problem can be caused by the ammonia, NH₃ produced by burning fossil fuels?

- A acid rain
- B eutrophication
- C global warming
- D depletion of the ozone layer

B magnesium ions are oxidised.

D chloride ions gain electrons during the process.

The diagram shows the structural formula of ethane.

The electronic configuration of C is 2, 4 and H is 1.

How many covalently bonded electrons surround each carbon atom in the above structure?

- A 2
- B 4
- C 6
- D 8

39. What is the correct order of the following hydrocarbons in terms of increasing boiling points?

propane C_3H_8 methane CH_4 and ethane C_2H_6

- A methane, propane, ethane
- B ethane, methane, propane
- C methane, ethane, propane
- D ethane, propane, methane

40. Which name is given to a series of compounds that differ from each other by a fixed repeating unit?

- A heterogeneous series
- B homologous series
- C homogeneous series
- D hydrocarbon series

Questions	44	and	45	are	about	the	refining	of	petroleum.

Ques	10112 44	and 43 are about the renning of petroleum.		
44.	Whie	ch method is used to obtain lubricating oil fr	om crude oil?	
	A B C D	centrifugation chromatography filtration fractional distillation		
45.	Lubr	icating oils undergoes additional processing ocarbons.		f the more valuable
	What	t is the name of this process?		
	A	cracking		
	В	esterification		
	C	hydrolysis		
	D	polymerisation		
46.	Whice A B C D	h compound is an unsaturated hydrocarbon? ethane ethene ethanoic acid ethyl methanoate		
17.	Blanc	o Bleach is a Bahamian company.		
	Which	h element is needed in large quantities by Bl	anco to make bleach?	
	A	bromine		
	В	chlorine		
	C	fluorine		
	D	iodine		

	Lestrial age. As a result,
40	Carbon dioxide emissions have steadily increased since the start of the industrial age. As a result,
48.	Carbon dioxide emissions have steadily increased since the same that the carbon dioxide in the Earth's air has increased by approximately 20%.

What are the effects of this change?

Id	rain
	Id

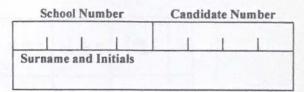
- B global warming
- C both of the above
- D none of the above

49. Which ore is aluminum metal extracted from?

- A aragonite
- B bauxite
- C galena
- D haematite
- 50. Iron is extracted from its ore using a blast furnace.

Which form of iron is extracted from the blast furnace?

- A impure pig iron
- B pure liquid iron
- C solid iron nuggets
- D stainless steel iron


BLANK PAGE

41. Dilute acetic acid, commonly known as vinegar, is the second smallest carboxylic acid.

Which choice correctly matches the correct formula and name for this acid?

	acid name	formula
A	ethanoic	CH ₃ COOH
В	hydrochloric	HCl
С	methanoic	СНООН
D	methanoic	СНО,Н

- 42. Which pair shows two elements which are liquids at room temperature and pressure?
 - A bromine and mercury
 - B chlorine and water
 - C fluorine and silver
 - D oxygen and zinc
- Which element in the Periodic Table has an allotrope that is capable of conducting electricity?
 - A carbon
 - B chlorine
 - C oxygen
 - D sulfur

CHEMISTRY

PAPER 2 3051/2

Wednesday

18 MAY 2016

1:30 P.M.-3:00 P.M.

Additional materials: None

MINISTRY OF EDUCATION NATIONAL EXAMINATIONS

BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION

INSTRUCTIONS AND INFORMATION TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your school number, candidate number, surname and initials in the spaces provided above.

Answer ALL the questions on this paper.

Read each question carefully and make sure you know what you have been asked to do before starting your answer.

The instruction NAME . . . requires an answer in words NOT chemical symbols.

Show **ALL** your working when answering numerical questions. Lines are provided on the question paper for your answers. You should write your answers on these lines only.

A copy of the Periodic Table is provided on page 2.

The mark for each part question is given in brackets [].

FOR EXAMI USE	NER'S
1	
2	
3	
4	
5	Final
6	
7	
8	
TOTAL	

Krypton 36

Ar Argen 18

Xeron S4

Radon

		-	-		10		18			36			Ŋ	-		80	+
		III		61 TT	Fluorine 9	35.5	Chlorine 17	80	Br	Bromine 35	127	I	lodine 53	3	At	Astatine 85	
		I/		91 0	B Oxygen	8 0		79	Se	Selenium 34	128	Te	Teffurum 52		Po	Polanium 84	
		>		× 2	Nitrogen 7	E Q	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	Bi	Bismuth 83	
		2		20	6 Carbon	Si	Silicon 14	73	Ge	Germanium 32	119	Sn	50 Tin	207	Pb	Lead 82	
		=		= m .	2 60000	A A	Aluminum 13	70	Ga	31	115	In	49	204	F	Thallium 81	To and the second
50				101	TA LIVE			65	Zn		112	PS	Cadmium 48	201	Hg	Mercury 80	
lement								64	Cu		108	Ag	47 Silver	197	Au	Plo 62	
of the E	dr							65	Z		106	Pd	46	195	7	Pletinum 78	
lic Table	Group							89	000	27	103	Rh	45	192		177	
The Periodic Table of the Elements			Hydrogen					99	Fe Fe	26	101	Ru	44	190	Os	Osmium 76	
Th			1904					55	Mandanesse	25		JC.	43			Rhenium 75	
								25		24	96		42	184	3	Tungsten 74	
								51	ε		93		41			Tantalum 73	
								8 !	F		16	17	40	178		Hafnium 72	
								\$ 6	Scandium		68		39	139	La	Lanthanum s	227
	:	=		Be Beryfum	7	Mg		9 (20 02	88	S	38 3	137		Serium 5	226
	+	-			4		=			2			(7)			5	

Neon Neon

Helium

0

88	88				The state of the s											
I I anthan	to to the total the total tota	140	141	144		150	152	157	159	162	165	167	169	173	175	
12 Actinoid series	old series	Ce	Pr	PN	Pm	Sm	Eu	PS	Tb	Dy	Ho	山	Tm	Yb	Lu	
ארוווטא פר	ח אבוובא	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbum	Luteburn	
		58	59	90	61	62	83	64	65	99	67	89	69	70	71	
•	a = relative atomic mass	232		238												
×	X = atomic symbol	H	Pa	n	Np	Pu	Am	Cm	Bk	5	Es		Md		Ľ	
Q	b = proton (atomic) number	Thorium	Protectinium	Uranium	Neptunium	Plutonium	Americium	_	Berkelium 07	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium	
		200	ח	36	25	5	22		20	20	De l		101		103	

Actinium

Ra Radium

1.

(a)	What is the Periodic Table?	
(b)	State how the Modern Periodic Table is arranged.	
(c)	Name the least reactive group of elements in the Periodic Table.	
(d)	Name the series of elements to which Mn belongs.	
(e)	Name the element that is in Period 3 Group II.	
(f)	Name the element that has cation X ³⁺ and electronic configuration 2,8.	
(g)	State the name of the element with the symbol Sb.	L GER
(h)	State the charge on one ion of sodium.	
(i)	Name the grey/purple solid halogen.	
(j)	Name a non-metal that occupies 78% of the air.	

(c)

Alumi	nium can be extracted by electrolysis from its ore, Bauxite. During the electron is produced. The anode reacts with this oxygen, as shown in the equation.
	$C + O_2 \longrightarrow CO_2$
(i)	State the oxidation number of each carbon in the following.
	C
	CO ₂
(ii)	State which element is oxidised and which is reduced in the equation.
	oxidised
	reduced
(iii)	State why aluminium cannot be extracted from its ore by reduction with car
Iron is	extracted from its ore by a reaction with carbon.
State t	he name of the ore.
	TOTAL MARKS