ا صا

CHEMISTRY

PAPER 1 3051/1

Friday 28 MAY 2004 12.30 - 1.45 P.M.

Additional materials: Periodic Table

MINISTRY OF EDUCATION NATIONAL EXAMINATIONS

BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION

INSTRUCTIONS AND INFORMATION TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your school number, candidate number, surname and initials in the spaces provided above.

Answer ALL the questions on this paper.

For each question in this paper, FOUR suggested answers A, B, C and D are given.

Circle the letter of the response which you consider to be correct.

Attempt ALL the questions. Marks will NOT be deducted for wrong answers. Your total score on this test will be the number of correct answers given.

Relative atomic masses are given in the Periodic Table of elements provided.

The volume of one mole of gas at room temperature and pressure (r.t.p.) is $24,000 \, \mathrm{cm}^3$ and at standard temperature and pressure (s.t.p.) is $22,400 \, \mathrm{cm}^3$.

			•
1	Matte	er is neither created nor destroyed in a chemical reaction	on is one way of
1.	word	ing the	10
	Word		
	` A	law of Conservation of Mass.	
	В	law of Definite Proportions.	
	C	law of Multiple Proportions.	
	D	law of Conservation of Energy.	
	D		
2.	Whic	ch pairing can be called allotropes?	
10 2-10 20			
	Α	silicon and carbon	
	В	sulphur and brimstone	
	С	lead and copper	
	\ D	diamond and graphite	
			ation?
3.	Why	y can ethanol and water be separated by fractional distill	discour.
	Α	chemically similar	
	В	different densities	
	\ C	different boiling points	8
	D	do not react with each other	*
		ich process can be used to decide whether chlorophyll	is a single colour
4.	Whi	ich process can be used to decide with	91
	or a	mixture of colours?	
	× .	-katography	第 注
	\A	chromatography	
	В	crystallization distillation	
	C	filtration	
	D	miration	*
5.	1A/h	nich property would suggest that an element should	be classified as a
3.	nor	n-metal?	
28	1101		
	Α	reacts with oxygen to form a basic oxide	6 8
	В	least electrons to form a stable ion	1
	1C	ion is attracted to the anode of an electrolysis appara	atus
	D	is a good conductor of heat	ā
	D	10 4 6004 22	

6.	Whi	ch statements can be used to describe both sodium and	d pota	ssiu	m?	\$6
	I . III	They have high melting points. They can be easily cut with a knife. They will conduct electricity.	· •	80 80		
	Α	III only		63		
	В	I and II only				
* =	C	II and III only				
	\ D	I, II and III		7%		
0.00						
7.	Whic	th statement is always true about a strong acid?	.c.	20		
	Α	It fumes in moist air.				35
	\ B	It ionizes completely in water.				
	С	It forms a viscous solution.				
	D	It has a pH value near to 14.				
		a pri varac fical to 14.				
	Use the c	he given information for questions 8, 9, 10 and 11. hoices may be used once, more than once or not at all	ı.	ŭ		50 60 60
	Α	II . I'				
	R	alkali metals				
	В	alkaline earth metals				
	Ç	alkaline earth metals halogens	al as			
		alkaline earth metals	e .			
	Ç	alkaline earth metals halogens				
8.	C D	alkaline earth metals halogens noble gases		ם	C	7
8	C D	alkaline earth metals halogens	A	В	С	ٔ م
8	C D	alkaline earth metals halogens noble gases ost unreactive family of elements	×			מֿ
8. 9.	C D the mo	alkaline earth metals halogens noble gases ost unreactive family of elements	×			م م
- 14 - 14 - 14	C D the mo	alkaline earth metals halogens noble gases ost unreactive family of elements	A	В	¿	ם מ
9.	C D the mo	alkaline earth metals halogens noble gases ost unreactive family of elements	A	В	¿	ם
- 14 - 14 - 14	C D the mo	alkaline earth metals halogens noble gases ost unreactive family of elements	A	В	¿	ם ס
9.	C D the mo	alkaline earth metals halogens noble gases ost unreactive family of elements negative ions	A	В		ם ם ם
9. 10.	the mo	alkaline earth metals halogens noble gases ost unreactive family of elements negative ions aturally as coloured elements	A	В	¿	ם ס ס
9.	the mo	alkaline earth metals halogens noble gases ost unreactive family of elements negative ions	A	B B	¿	ם ם

Use the named solids A, B, C or D to answer questions 12, 13 and 14. The choices may be used once, more than once or not at all.

	Which A B C D	solid graphite iodine sodium hydroxide sucrose	Ð		a J		***
12.	gives	off a purplish vapour when it sublimes?		Α	В	С	D
13.	can co	onduct electricity in the solid state?	×	Α	В	С	D
14.	when	dissolved in water the reaction is highly ex-	othermic?	Α	В	C	D
15.	Whic	h named particle has a mass closest to the m	nass of a pr	oton?			
	A B C D	alpha particle deuterium electron neutron	1				
16.	Wha oxyg	t is the approximate percentage composit on the compound $HClO_4$?	ion by ma	iss of t	he	elen	nent
	A B C	4 % 16 % 64 % 67 %					
17. -	Wha dich	at is the oxidation state of chromium, Cr, aromate, $K_2Cr_2O_7$?	in the con	npoun	d po	otass	sium
	A B C D	+ 2 + 4 + 6 +12					

18.	An element has these properties:	
	shiny, brittle, poor electrical conductivity and a high melting point	
	This element can be best classified as a(n)	
	A alkali metal. B halogen. C metalloid. D transition metal.	
	Use the given information to answer questions 19, 20 and 21. The ch may be used once, more than once or not at all.	oices
¥	Which solution	
15 15 26	A HNO ₃ B CH ₃ COOH C Cu(NO ₃) ₂ D NaOH	
19.	will be coloured blue? A B Q	, D
20.	contains a weak acid?	
21.	will contain molecules with the given formula? A B C	D
22.	Which molecular formula corresponds to a molecule with an empir formula of CH ₂ ?	ical
<u></u>	A CH_4 B C_2H_2 C C_2H_6 D C_3H_6	
23.	What is most likely to occur when carbon dioxide is bubbled throudistilled water at room temperature?	gh
	A solid carbon will precipitate B the pH value of the solution will become smaller C the carbon and hydrogen in the mix will form methane D there will be no change in the nature of the distilled water	

24. The diagram shows the sources of energy a country uses to generate electricity.

What is the total percentage of fuels used which, when burned, could cause acid rain?

- A 20%
- B 80%
- C 90%
- D 100%
- 25. Which is a formula for an organic compound?
 - A SiO₂
 - B NH₃
 - C H₂O
 - D CH₄
- 26. The reactivity and chemical behaviour of an atom is governed by many factors. Which determines the reactivity of an atom?
 - A the number of electrons in the atom's valence shell
 - B the number of neutrons in the atom's nucleus
 - C the number of protons in the atom's nucleus
 - D the number of protons lost during the chemical reaction
- 27. Which quantity is the measure of mass per unit volume?
 - A density
 - B molarity
 - C partial pressure
 - D relative atomic mass

28. Which is the best description of the particle arrangement in chlorine-37?

	protons	electrons	neutrons
A	17	37	20
В	17	17	20
С	37	37	20
D	. 37	17	0.

29.	TATE A Land CT. Tr. C. C.	
49.	What type of bonding is found in potassium by	romido?
	of the state of th	ioniude:

- A covalent
- B dative
- C ionic
- D metallic

30.	Which	structure	will	have	an	electronic	configuration	identical	to a	neon		. a
	atom?					40	0	- Criticar	to a	Heon	. *	1.0

- A the helium atom
- B the fluoride ion
- C the potassium ion
- D the argon atom

31. Which chemical compound forms the largest part of the conch's shell, the very large snail-like mollusc found in Bahamian waters?

- A calcium carbonate
- B calcium phosphate
- C sodium carbonate
- D sodium hydrogen carbonate

32. Which compound has the same relative formula mass, M_r , as carbon dioxide?

- A water
- B sulphuric acid
- C propane
- D limestone

The table lists the results produced when some ions react with the given test reagents.

Use the information from the table to answer questions 33 and 34.

test reagent	excess NaOH (aq)	hydrochloric acid	aqueous ammonia
A	white precipitate	white precipitate	white precipitate
B	white precipitate	no precipitate	white precipitate
	no precipitate	no precipitate	no precipitate
D	no precipitate	no precipitate	white precipitate

Which result corresponds to the aluminium ion? 33.

B C

Which result corresponds to the lead(II) ion? 34.

В C

Which ions are found in an aqueous solution of sodium sulphate? 35.

> Na²⁺, SO₄²⁻, H⁺, OH⁻ Na⁺, SO₄²⁻, H⁺, OH⁻ Α

В

Na²⁻, SO₄²⁺, H-, OH+ C

Na+, SO₄-, H-, OH+ D

The proton numbers of elements are shown. 36.

Which element is a metal?

element	proton number
Α	34
В	35
С	36
D	37

37.	The symbol is ³¹ P
57.	THE SYMBOL IS STP
	J 10 1E1

How many electrons does the outer shell of this atom contain?

- Α 1
- В 3
- C 5
- D 6

38. Which element is located in Group 2, Period 3 of the Periodic Table?

- A boron
- B helium
- C lithium
- magnesium

What is the formula of the compound formed by element X, in group 2 and 39. element Y, in group 7?

- A XY

- B XY_2 C
- $X_2\bar{Y}$
- D

- Α 0
- В +212
- C +273
- D -273

Use the information in the equation to answer questions 41, 42 and 43.

The complete combustion of ethane can be represented by the equation:

$$2\,C_2^{}\mathrm{H}_6^{}\left(\mathrm{g}\right) + 7\,O_2^{}\left(\mathrm{g}\right) \rightarrow 4\,CO_2^{}\left(\mathrm{g}\right) + X\,\mathrm{H}_2^{}\mathrm{O}\left(\mathrm{l}\right)$$

- 41. What is the numerical value of X that balances the equation?
 - A
 - B 2

1

- C 3
- D 6
- 42. How many moles of carbon dioxide would be produced from just one mole of ethane?
 - A 1
 - B 2
 - C 3
 - D 4
- 43. At room temperature and pressure what volume of oxygen gas is needed to completely burn the 2 moles of ethane gas?
 - A 24.0 dm³
 - B $48.0 \, dm^3$
 - C 144.0 dm³
 - D 168.0 dm³

44. A hydrocarbon mixture consists of the compounds shown in the table.

compound	boiling point/°C
heptane	98
hexane	69
hexene	64
octane.	126
pentane	36
pentene	30

The mixture is fractionally distilled.

The fraction boiling between 60 °C and 80 °C is collected.

Which compounds will be in the distillate?

- A heptane and hexane
- B hexane and hexene
- C hexene and octane
- D pentane and pentene
- Which term best describes slag, a material involved in the extraction of iron in the blast furnace?
 - A by-product
 - B main product
 - C naturally occurring starting material
 - D synthetic starting material

Questions 46, 47 and 48 refer to this word equation. The schematic shows a series of steps that produce useful substances. Other substances may be produced in each step but those substances have been omitted.

glucose \rightarrow step 1 \rightarrow ethanol \rightarrow step 2 \rightarrow ethene \rightarrow step 3 \rightarrow polythene

- 46. What does step 1 require?
 - A heat
 - B hydrogen
 - C oxygen
 - D yeast
- 47. What is the other product in step 1, besides ethanol?

 - B hydrogen
 - C oxygen
 - D water
- 48. What type of reaction is involved in step 3?
 - A decomposition
 - B oxidation
 - e polymerisation
 - D reduction
- 49. Nitrogen, phosphorus and potassium are elements needed by plants and supplied in fertilizers.

Which compound contains two of these elements?

- A ammonium nitrate
- ammonium phosphate
- C potassium chlorate
- D sodium nitrite
- 50. Which gas is responsible for the earth's greenhouse effect?
 - carbon dioxide
 - B ozone
 - C carbon monoxide

CHEMISTRY

PAPER 1 3051/1

Monday 30 MAY 2005 12.30 - 1.45 P.M.

No additional materials required.

MINISTRY OF EDUCATION NATIONAL EXAMINATIONS

BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION

INSTRUCTIONS AND INFORMATION TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your school number, candidate number, surname and initials in the spaces provided above.

Answer ALL the questions on this paper.

For each question in this paper, FOUR suggested answers A, B, C and D are given.

Circle the letter of the response which you consider to be correct.

Attempt ALL the questions. Marks will NOT be deducted for wrong answers. Your total score on this test will be the number of correct answers given.

Relative atomic masses are given in the Periodic Table of elements provided.

The volume of one mole of gas at room temperature and pressure (r.t.p.) is 24,000 cm³ and at standard temperature and pressure (s.t.p.) is 22,400 cm³.

The Periodic Tal The Periodic	ble of the Elements	o III IV V VI VIII 0	He He	11 12 14 16 19 20 B C N O F Ne Ne Ne Ne Ne Ne Ne	Al Si P S CI Ar Automate 15 10 17 Catation 18 18 18 18 18 18 18 18 18 18 18 18 18	Ni Cu Zn Ga Ge As Hotal 20 20 30 30 31 31 31 31 31 31 31 31 31	106 108 112 115 119 122 Pd Ag Cd In Sn Sb Sp So In Sh Annmon 48 S0 178 S1	195 187 201 204 207 209 Pt Au Hg T1 Pb Bi Preserve 196 80 81 82 83	
23 S1 S2 V Cr V Cr Numbers 23 Nb No Nb No	e Periodic T	dnoso	H H			Fe Co Ni	Ru Rh	190 192 Os Ir Opmium 177	
						SI S	Nb Mo	181 184 Ta W Tanam Tanam	

hoid series	5 Ce	Pr Prassodymian 55	Nd Nd	Pm Pmetron	Sm. Smarten	152 Eu Europen 63	157 Gd	हैं दे हैं	162 Dy Dyspensium 66	165 Ho Hatmium 67	Er Er Er	Tm	Yb or	Lu Lu Luanum
A = relative atomic mass X = atomic symbol b = proton (atomic) number	は 古 中 神	Pa Frotectivism 91	238 U University	Np Mepanism	Pu Pu	Am American	Cm S S S	Bk Pr	S. C.	E E E E E E E E E E E E E E E E E E E	Fm Femina 100	Md	No No	Lr Longonecom 103

anthanoid series Actinoid series

 A student tries to make four gases. He wants to collect them in gas jars over water.

Which of the gases will he not be able to collect?

- A ammonia
- B chlorine
- C hydrogen
- D exygen
- A student wishes to remove the cloudiness from limewater. He also wants to separate the colours from red rose petals.

Which letter below correctly shows the methods he must use?

•	removal of cloudiness from lime-water	separation of colours from red rose petals
A	distillation	filtration
В	chromatography	distillation
C	filtration	chromatography
D	sublimation	distillation

The diagrams show models of molecules.

Which substances could the models represent?

	X	Y	Z
A	helium	chlorine	water
В	helium	hydrogen chloride	methane
С	hydrogen	chlorine	water
)	hydrogen	hydrogen chloride	methane

4. The diagrams show the structures of two forms, X and Y, of a solid element.

What are suitable uses of X and Y, based on their structures?

	use of solid X	use of solid Y
A	drilling	drilling
В	drilling	lubricating
c ·	lubricating	drilling
D	lubricating	lubricating

Enzymes are used in some washing powders.

How would a chemist classify enzymes used for this purpose?

- A a biological catalyst
- B. a bleaching agent
- C a type of detergent
- D a type of salt

Use the information in the diagram to answer questions 6 and 7.

The two solutions react completely, to give a solid and a solution.

- 6. What is the residue in the filter paper?
 - A NaNO₃(s)
 - B AgCl(s)
 - C NaNO₃(aq)
 - D AgCl(aq)
- 7. What is the filtrate in the beaker?
 - A sodium chloride
 - B silver chloride
 - C sodium nitrate
 - D silver nitrate
- The diagram shows particles changing phases.

What name is given to the phase change occurring to the iodine molecules?

- A sublimation
- B melting
- C condensation
- D boiling

	No. 🛥	****
9.	The particles in a liquid and the particles in a gas be Compared to the particles in a gas at the same temperature	e, the particles in a
	liquid	
	A fill the container they occupy more completely. B have a less regular arrangement.	B
	B have a less regular arrangement. C have stronger forces of attraction between them.	
	D move faster.	
3		ete that the process
10.	When a solid dissolves in water, which observation sugges	sis that the process
	is endothermic?	
	A The solution gives off a gas.	
*	B The solution changes colour. C The temperature of the solution decreases.	
	D The temperature of the solution increases.	
		haa
11.	Compared to the charge and mass of a proton, an electron	nas
99	A the same charge and a smaller mass.	
	B the same charge and the same mass.	P R
	D an opposite charge and the same mass.	
	Use the list of compounds to answer questions 12 to 14. may be used once, more than once or not at all.	These compounds
	A sulphur dioxide B phosphoric acid	
	B phosphoric acid C carbonic acid	
	D potassium nitrate	
	Which compound	
	Which compound	а в С D
12.	is an acid anhydride;	Abcs
		л в С D
13.	is used to make detergent;	АВСБ
14.	has a molecular formula containing the fewest oxygen atoms?	A B C D

1	5. ·	Which chemical conc of reaction?	ept is used to explain	the effect of temperature on rate	s
8	E C	Boyle's Law Charles' Law			
16	. W	hich gas would diffut oxide, $M_r = 44$?	se through an air-fille	d pipe at the same rate as carbon	88
	A B	hydrogen chlorid hydrogen gas	de		3
	C	nitrogen gas	26		
	D	propane	as in a wa	20 H	9
		*	25 (2) 27 (2)	(a) (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	
17.	Wh	ich element has an al	llotrope that is electrical	ally conductive?	*
	Wi seem w		and the second s	any conductives	
	Α	carbon	N N	8	
	В	chlorine		8	
	C ,	oxygen	E 2	8	
	D´	sulphur		a > 2	38
				* *	
18.	Whi	th pair contains two		10 10 10 10 10 10 10 10 10 10 10 10 10 1	
	ia totata	Para Colitantis (WO	particles with the same	e electronic configuration?	
	Α	atoms of oxygen ar	nd flyoring		
	В	cations of calcium	and magnesium		
	C	hydrogen cation ar	d helium atom		
	D	ions of potassium a	and chloring		
		- Policolani e	and chilothie		
		***	# 9 m	報	
9.	Which	represents the elect	ronic configuration of	the sodium atom?	
100	A	1, 1	en Le		
	В	1,3			
	C	2, 8, 1	38	8	
	D	2, 8, 8, 1	09	2 n s s	
98		ACTION STATE OF THE STATE OF S		986	

19.

- Which part of the Periodic Table contains the element copper? 20. alkali earth metals A alkali metals B noble gases C
- Which statements are correct about elements in Group VIII of the Periodic 21. Table?
 - Their atoms all have equal numbers of protons and neutrons.
 - They are all less reactive than nitrogen. 2

transition metals

- The valency shells of their atoms are all full of electrons. 3
- 1 and 2 1 and 3

D

- 2 and 3 C
- 1, 2 and 3 D
- All the Group II elements react with all dilute acids to give the same gas as a 22. product.

Which gas will be given off when a Group II element reacts with dilute chloric acid HClO₃?

- oxygen A
- hydrogen B
- chlorine C
- carbon dioxide D
- Which line correctly shows the trend in the numbers of particles in the atoms of the elements of Period II of the Periodic Table, going from left to right? 23.

	protons	electrons	neutrons
A	decrease by one	decrease by one	decrease by one
В	increase, but varies	increase, but varies	decrease, but varies
C	increase by one	increase, but varies	increase by one
D	increase by one	increase by one	increase, but varies

2	4.	What is the ator of +3?	nic number of	an ion w	rith 5 prote	ons, 6 neutrons	and a charge
¢	,	A 1 B 3 C 5 D 6				»	
88	€					3. 1	
25.	73	What is the mass nd 31 neutrons?	number of an	atom, w	hich conta	ins 28 protons, 2	28 electrons
	A B C		. m 3	W II.	5-2	#2 22 8	. ·
0001 0001			¥		•	- 100 A	
26.	A B C D	hich listed atom ectrons? silicon sulphur nitrogen chlorine	in the Perio	dic Table	has the	greatest ability	to attract
27.	Whi	ich element is ex	tracted from it	s ore usi	ng the Blac	st Furnace proce	2
	A B C D	aluminium iron sodium sulphur		72.0		or I difface proce	
28.	What	does a solution	consist of?		к** \$	× 6	s
	A B C D	a solvent and a a filtrate and a crystals and hy solids and liqui	residue drates	*			

28.

The list identifies the symbols of four elements. Use the list to answer questions 29 to 31. The choices may be used once, more than once or not at all.

A Ca

B S

C Fe

D N

Which element

is in all proteins;

ABCD

30. can form cations with different valences;

ABCD

31. is an industrial catalyst?

ABCD

32. Which element can usually be found in nature in a free (uncombined) state?

A aluminium

B barium

C calcium

D gold

The equation shows the cracking of a hydrocarbon.

Which molecule or combinations of molecules is unsaturated?

A X only

B Y only

C X and Z

D Y and Z

Which compound contains 40.0% oxygen by mass?

34.

A B C

D

CaO NaOH CO Fe₂O₃

	60	#85 87	:						
35.	V	Vhat is the	empirical fo	ormula of ti	he compoi	and with	a formul	a of P ₄ O ₁	o?
	A		* *	32	93				J
	В			. *	254				ï
	C	P_2O_5		* F				3	
	D	P8O20	x 2		· A		N - 12 (N)		
		8 - 20			\$ a	Tr.	*1 AT	8*	•
		*	e e e			20	442		
36.	W	hat is the n	nass of one	mole of V	~ .			200 200	
	*		or one	more or K2	-O ₃ ?	• •			83
	Α	138 g		38					
	В	106 g							
	C	99 g	*						
	D	67 g	3-			1			
(%) -24									
				8				27 24	
<i>37</i> .	Wha	at is the fo	ormula of a	COmpound	l fo 1	L	. P	65 Ma	
	and	a halogen,	ormula of a	compound	i formed f	by an alk	aline-ear	th metal,	, M,
	A	MX					8	10 US	
SI	В	George Many	\$ \$5		1 ×				
8	Č	MX_2		8 0					
	D	M_2X			25				
		M_2X_3				28	Sec. (50)		

38. Which place on the map is most likely to be producing large quantities of sulphur dioxide?

- 39. Which functional group is responsible for a compound being classified as an organic alcohol?
 - A -COOH
 - B -CH₂OH
 - C -CH₂SH
 - D -CHO
- 40. Which compound is correctly named?
 - A NaOH (aq), lye
 - B HCl (g), hydrochloric acid
 - C CuO(s), copper(I) oxide
 - D CaO (s), limestone

Two pieces of cotton wool, one soaked in hydrochloric acid, and the other soaked in concentrated ammonia solution, were placed at the ends of a glass tube which was then stoppered as shown.

When the gases diffuse from each piece of cotton wool a white ring of ammonium chloride forms in the tube.

Use this information to answer questions 41 and 42.

- 41. What is the correct formula for ammonium chloride?
 - A NH₃CI
 - B NH₃Cl₂
 - C NH,CI
 - D NH,Cl,
- 42. At which point, marked on the tube, will the white ring of ammonium chloride most likely form?
 - A P
 - B Q
 - C R
 - D s
- 43. What happens according to this redox reaction?

$$2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO}$$

- A Mg is oxidized and acts as an oxidizing agent
- B Mg is oxidized and acts as a reducing agent
- C MgO is oxidized and acts as an oxidizing agent
- D O₂ is oxidized and acts as a reducing agent

Three samples of the same sized marble chips are placed in three test-tubes, X, Y and Z with the same amount and concentration of hydrochloric acid. Additional conditions for each test-tube are included with each diagram.

44. What is the correct order for the rates of reaction with the fastest rate first?

A X, Y, Z B Y, Z, X C Z, X, Y D X, Z, Y 45. The mass of a catalyst was monitored throughout a reaction and the results plotted on a graph.

Which graph represents the correct relationship of mass against time?

- 46. Which is a property of all reversible reactions that have reached equilibrium?
 - A the amount of products exceeds the amount of reactants
 - B the amount of products is equal to the amount of reactants
 - C the forward reaction rate exceeds the backward reaction rate
 - D the forward and backward reaction rates are equal

Use the diagram to answer questions 47 to 49.

The diagram shows the locations of some substances on the pH scale.

		, i		omat uice ↓	:0		hole ilk b	olood			**	9 V)		odium roxide ↓
	1	2	3	4	5	6	7	8	9	10	11	12	13	14
hyd	↑ rochlacid	oric			↑ black coffee		↑ water	31		3 4 3		N N		

- 47. Which of the named substances is nearest to being neutral?
 - A black coffee
 - B whole milk
 - C sodium hydroxide
 - D tomato juice
- 48. Which listed substance exhibits the greatest acidity?
 - A black coffee
 - B blood
 - C sodium hydroxide
 - D tomato juice
- 49. Which substance would cause the Universal Indicator to turn dark blue?
 - A sodium hydroxide
 - B tomato juice
 - C milk
 - D hydrochloric acid
- 50. Which gas is responsible for the green-house effect?
 - A carbon monoxide
 - B carbon dioxide
 - C sulphur dioxide
 - D sulphur trioxide