		mber
1		
	<u>k</u>	1_1_

CHEMISTRY

PAPER 2 3051/2

Monday 23 MAY 2011 1.50 P.M. - 3.20 P.M.

No additional materials required

MINISTRY OF EDUCATION NATIONAL EXAMINATIONS

BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION

INSTRUCTIONS AND INFORMATION TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your school number, candidate number, surname and initials in the spaces provided above.

Answer ALL the questions on this paper.

Read each question carefully and make sure you know what you have been asked to do before starting your answer.

The instruction NAME . . . requires an answer in words not chemical symbols.

Show ALL your working when answering numerical questions. Lines are provided on the question paper for your answers. You should write your answers on these lines only.

The mark for each part-question is given in brackets [].

A copy of the Periodic Table is printed on page 2.

For E	Examiner's Use
1	
2	
3	9
4	W 849
5	-8 of 18
6	
7	e 6
8	
TOTAL	

This question paper consists of 19 printed pages and 1 blank page.

		0	Fee F	20 N 00 10 10 10 10 10 10 10 10 10 10 10 10	Ar Ar	至不是	2 × §	R Pa		Lu Lu	7 50 E
		II/		€ H 4	SS CI	Br Br	E I 3	At At ass		ت ک <mark>ا</mark>	No Presson
		5	w	91 O O	2 S 3 3	Se Se	Te Te Te Sz	1		a T T	Md Lendsteam
		>		N N Mucopen	31 Popularions 15	As As		Bi Esman		167 Er	F. F. 81
		2		င္ ပ ရွိ	SS Si Second	ZG General	Sn Fr 02	207 Pb		165 Ho 57	E 2000 16
		=		2 gg B3 ::	Al Al	Ga Ga	IIS In Indem	204 TT Them		162 Dy Proposeum 66	Cf Selenan
s			•			ss Zn ™	Cd Cd Cdcmmm 48	Hg Hg		EST TD To Table 3	BK Batelan 97
The Periodic Table of the Elements						Cu See	Ag Ag	197 Au 504	es.	Gd Gd	E §
e of the	dno					8 Z 3	Pd Pd Pd	195 Pt Pt 195		152 Eu Europhum	Am Am
dic Table	Group				29 0	Co Coban	Rh Madem	192 Ir 17		Sm Sanashun 62	
ne Perio			H Hydropen	Ŷ		55 Fe 55	Ru Ferral	051 OS 200 200 200		Pm Pometrum 61	Np Maparam
F						SS Mn Magnete		186 Re Person		Nd Nashmann	238 U U
3 3 7						S2 Cr Cromium 24	Mo Mappenim 42	184 W Tungsten 74		Pr Praseodymium 59	Pa Feddinum 91
						SI V V Ez	a N J	Ta Tanaban Tr		Ce 28	ස 두 후
					តា	48 TT Telenom	21 Zr Zrecomun 40	178 Hf Telebran			¥
						Sc Scarbon 21	88 Y Y 85 EE	139 La Lankanan S7	Ac Ac Remain	d series series	A = relative atomic mass X = atomic symbol b = proton (atomic) number
		=		Be Bertum	24 Mg Megnesum 12	Ca Ca	Sr Sronton 38	137 Ba	Ra Ra Rown	*58-71 Lanthanoid series 190-103 Actinoid series	·×
581023	-	-		Li Li	23 Na Sodoum	33 K Poursement 19	R Rb	Cs S s	Fr Franciam 87	.58-71 L 190-103	Key

The diagram is a part of the Periodic Table but the letters used are NOT the symbols
of the elements of the Periodic Table.

I											
							F	D		J	
Α	В					Е			С		Н
			G								

Use the letters given in the table to answer the questions.

a)	Write the	letter	which	represents	an	element that	
----	-----------	--------	-------	------------	----	--------------	--

is a member of the alkaline earth metal family;	
is the most reactive halogen;	
gains two electrons to form an anion;	
has an electronic configuration of 2,8,1;	
has four outer shell electrons;	
is the least dense gas at s.t.p.;	8
forms an amphoteric oxide.	
N N N	

b)	(i)	Draw a Lewis dot diagram to show the bonding formed by B and C .	in	the	comp	pound
		e e				
						[2]
	(ii)	Name the type of bonding shown in your diagram.				
			_			_ [1]
			To	tali	mark	c [10]

(b)

A solution containing water is being distilled to get pure water.

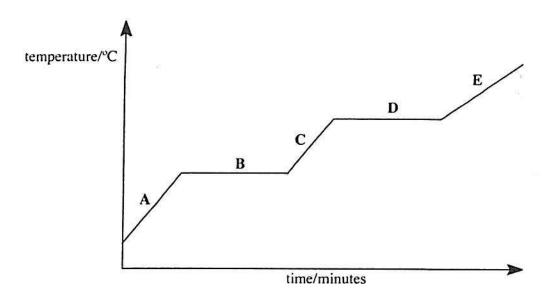
(a)	Name the physical	processes	taking	place a	t x and	iу.
-----	-------------------	-----------	--------	---------	---------	-----

(i)	x;		

- (b) Indicate on the diagram, using the phrase water in, where cooling water enters the system. [1]
- (c) Briefly describe how you could confirm that the water collected in the roundbottomed flask is pure.

× ×

(d)	(i)	State a method which may be used to obtain common salt from sea water.
	(ii)	Name the island of The Bahamas where salt is extracted on a large scale.
	(iii)	State ONE economic result of having a salt industry in the island.
e)		reezing point of water is 0 °C. If the temperature of the surroundings is zero, at -2 °C, salt can be added to melt the ice quickly.
	Expla	in why the ice melts.
	÷ 1	
	A	[2]
		Total marks [10]


3.	Matter can exist in three states: solid, liquid and gas. The Kinetic Theory describes
	how the various states of matter behave.

(a)	Using one wo	rd each time,	, fill in the	blanks in	the following sentence
-----	--------------	---------------	---------------	-----------	------------------------

The Kinetic Theory of gases states that all gases are made up of small

which are in continual	[2]
which are in continual	[-]

Solid substance X is being steadily heated in a container and its temperature is taken every 30 seconds. As the temperature rises, substance X changes state.

(b) Name the change of state of substance X occurring at point A and point B.

(i)	at	point	B
(- /		Pome	-

[1]

(ii) at point **D**.

[1]

(c)	Heat but ir	energy is going into the container containing substance X all the time sections B and D of the graph, the temperature does not rise.
	(i)	In terms of bonds between particles of substance X, explain why energy is being used up in section B of the graph.
		[1]
	(ii)	In the same way, explain why the energy is being used up in section D of the graph.
		[1]
Conta		hows solid X in the container before heating has started, at section A of
	conta	iner 1 container 2
(d)	In co	ntainer 2, draw the appearance of substance X at section C of the graph. [1]
(e)		box, draw some of the particles of X at section E of the graph, when langes of state have finished. Use the kinetic theory to help you.

	e crystals turned into a colourless gas. When the gas cooled als were formed again.
(i)	Name the change from a gas to a solid.
(ii)	Name another substance which can undergo this type of change.

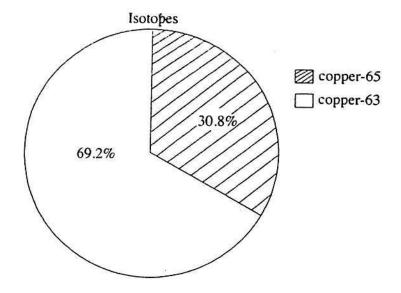
4.	Scientists	have	discovered	that	atoms	are	made	up	of	many	types	of	subatomic
	particles.												

The three particles that are most important for chemistry are the electron, the proton and the neutron.

- (a) (i) Protons are positively charged and electrons are negatively charged. Why is an atom electrically neutral?
 - (ii) The table gives values for subatomic particles in some atoms and ions.

 Use the Periodic Table printed on page 2 to help you to complete the table.

 [3]


symbol	number of electrons	number of neutrons	number of protons
	10	10	9
Na	11	12	
Mn	25		25
Al ³⁺	189	14	13

(b)	Neon-20, neon-21 and neon-22 are isotopes of neon, a gaseous element used
	in coloured lighted signs.

State how these isotopes are

(i)	different;	
(ii)	similar.	
		[2

(c) A sample of copper is a mixture of two isotopes, Cu-63 and Cu-65. Using the information from the chart, calculate the relative atomic mass of a sample of copper.

Use the equation to find the average relative atomic mass of the mixture of isotopes in the sample.

average r.a.m. =
$$\frac{(69.2 \times) + (30.8 \times)}{100}$$

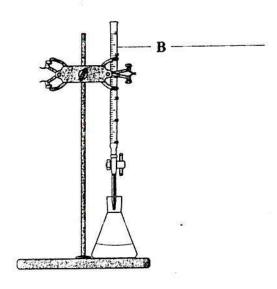
[2]

- (d) A chlorine atom is ¹⁷Cl₃₅ and an argon atom is ¹⁸Ar₃₉. A chloride ion formed from ¹⁷Cl₃₅ atom and an argon atom both have the same number of one type of subatomic particle.
 - (i) Name this type of particle.

_____[i]

(ii) Explain how a chlorine atom becomes a chloride ion.

Total marks [10]


____[1]

The reaction of an acid with a base produces a salt and water.

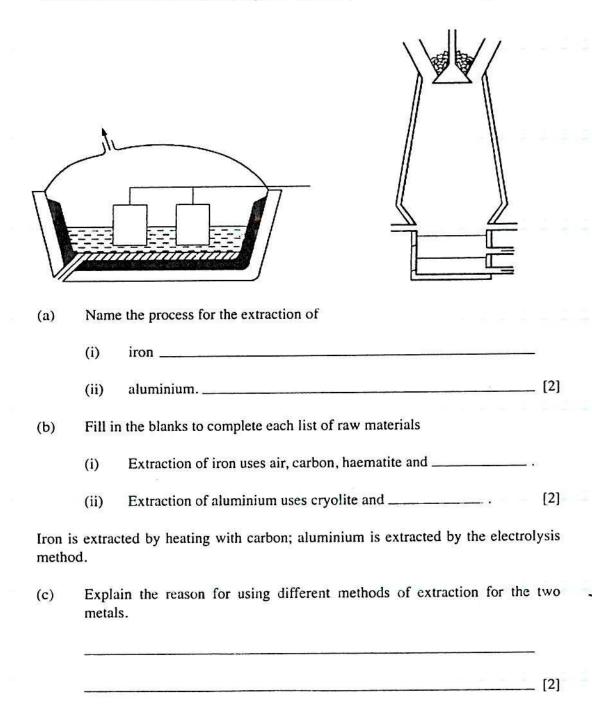
ACID + BASE → SALT + WATER

(a)	(i)	Complete the sentence.,		
and aparties		When they are dissolved in water,	_ produce H ⁺	
		ions and produce OH ⁻ ions.		[2
	(ii)	Complete the chemical equation, by filling in the b	oox for the produc	ct.
		$H^+ + OH^- \rightarrow$		[1]
	(iii)	Name the type of reaction that takes place in (a) (i	i).	

(b) A titration experiment was done using the apparatus in the diagram and the salt made was sodium chloride.

The indicator phenolphthalein turned pink when added to the reactant in the conical flask.

(i)	Label the apparatus B on the diagram.	[1]
(ii)	Write the chemical names of the two reactants used in the titrationake the salt, sodium chloride.	on to
	1	2
	2	[2]


Alu	acids are bases that react with hydrochloric acid in the stomach, minium hydroxide, magnesium hydroxide and calcium carbonate are all as antacids.
(i)	Using one of the bases, write a word equation to show how your chosen base reacts with the stomach acid.

(a)	Use t	he information to compare the reactivity of gold and silver.
	8	[1]
(b)	Sacri	ficial zinc blocks are attached to the steel hull of a ship to protect it from
		In the reaction $Zn - 2e^- \rightarrow Zn^{2+}$
	electi	ons supplied by zinc are accepted by steel and protect it from corrosion.
	(i)	State whether the loss of electrons from zinc is an oxidation or reduction reaction.
		[1]
	(ii)	Name a metal that is used in the same way to prevent corrosion of the steel used in oil pipelines.
		[1]
	(iii)	Name ONE method other than sacrificial protection that is used to prevent iron from rusting.
		[1]
(c)	A Bu water	nsen burner converts methane, CH ₄ , in natural gas to carbon dioxide and during combustion, according to the chemical equation:
		$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$
	(i)	Calculate the volume of carbon dioxide produced from 2 moles of methane at RTP. [2]

6.

	* *	
State whether or reduction re		en from methane is an o
Using the oute	er electrons only, draw a	diagram to show the bor
		<u>C</u>
	ule.	
a water moleci	ule.	
	ule.	

Iron and aluminium are extracted by two different processes as in the diagrams.

anoc	of the products of electrolysis of aluminium is oxygen which cause le to be worn out, by reacting with it. Name a compound produced by tion of oxygen with the material of the anode.
(i)	Define the term alloy.

8.			saturated hydrocarbons with a general formula C_nH_{2n+2} Alkenes are ydrocarbons with a general formula C_nH_{2n}
	(a)	(i)	Explain why alkenes are known as unsaturated hydrocarbons.
		(ii)	Work out the formula for an alkene that contains 5 carbon atoms.
			[1] Name this alkene.
			[1]
		(iii)	State how the alkanes in gasoline differ from the alkanes in kerosene. [1]
	(b)	metha	nne, CH ₄ , is an important constituent of natural gas. Chlorine reacts with ne by a photochemical reaction that results in the formation of carbon drogen chlorides.
			H H I I $H - C - H + CI - CI \rightarrow H - C - CI + H - CI$ I H H
		(i)	Name this type of reaction.
		(ii)	Name the organic product of the reaction shown in the equation. [2]

(c)	Nan	ne the type of reaction when
	(i)	glucose is converted to alcohol by the addition of yeast;
		ethene is converted into poly(ethene).
		[2]
	(ii)	Name the gas produced in (c) (i) as well as the ethanol.
		[1]
	(iii)	State how the alcohol obtained from the reaction of yeast with glucose can be made into a concentrated solution.
		[1]
		Total marks [10]

The second second																			
OBSTACL AND DESCRIPTION OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NAMED IN COLUMN TWO IS N																			
THE COLUMN																			
THE RESERVE THE PERSON NAMED IN COLUMN																			
A STATE OF THE STA							70												
The state of the s											39	98					•		
- And																			
74									2										
									•									5 11 15 m dd	