School Number	Candidate Number
	<u> </u>
Surname and Initials	

CHEMISTRY

PAPER 2 3051/2

Wednesday

22 MAY 2013

1:30-3:30 P.M.

No additional materials required

MINISTRY OF EDUCATION NATIONAL EXAMINATIONS

BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION

INSTRUCTIONS AND INFORMATION TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your school number, candidate number, surname and initials in the spaces provided above.

Answer ALL the questions on this paper.

Read each question carefully and make sure you know what you have been before starting your answer.

The instruction NAME . . . requires an answer in words not chemical symbols.

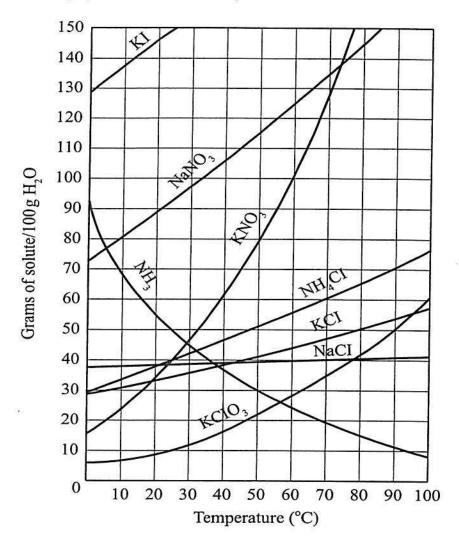
Show ALL your working when answering numerical questions. Lines are provided on the question paper for your answers. You should write your answers on these lines only.

The mark for each part question is given in brackets [].

		0	He Helum	Ne Necan	40 Ar Mgon	Kroton 36	X Xeron	Rn Redon		175 Lu Lutebum	Lr Lavencian 103
		₹		19 Frome	35.5 CI CHonna 17	80 Br Bramine 35	127 I Iodine 53	At Asiatine 85		Yb Yretham	
		5		16 Ongen	32 Sopre 50pre			Po Potonum 84		Tm Tmodem	Md Mendelevium 101
\$ F A		>		14 Narogen 7	31 Prosphorus 15	75 AS Arsenic		209 Bi Bsmuth 83	-0-	167 Er (Abryan	Fm Fermion 100
2 8 8		2		C Carbon	Si Sicon	73 Ge Gernamum 32	Sn Fn 50	207 Pb Lead		165 Ho Holmium 67	ES Ensteinium 99
ie ie ie		=		11 B B S	27 AI Aluminum 13	70 Ga Gellum 31	Ins Indom	204 TI Thallium 81		162 Dy Dysprosium 66	Cf Calibration 98
s,						65 Zn 30 znc	Cd Cadmium Cadmium	201 Hg Mercury 80		159 Tb Terbium 65	1 1
The Periodic Table of the Elements						64 Cu Copper	Ag Sher	197 Au 604		157 Gd Gadolinium 64	Cm Cuium
e of the	dn					S9 Ni Meter	106 Pd Paladum	195 Pt Puman 78		152 Eu Europium 63	Am Americum 95
dic Tabl	Group					S9 Co Cobalt	103 Rh Rhodrum 45	192 Ir Iridum 77		Sm Ssmarium 62	Pu Putonium 94
ne Perio			1 H Hydrogen 1			S6 Fe Iron	101 Ru Ruthenium 44	190 Os Osmium 76		Pm Promethium 61	Np Heptonium 93
F						55 Mn Menganese 25	Tc Technetium 43	186 Renion 75		Neodymium 60	238 U Vranium 92
						S2 Cr Chamism 24	Mo Metybdenum 42	184 W Tungsten 74		Pr Praseodymium S9	Pa Protectinism 91
5 I 0						51 Vanadum 23	Nobiemi Nobiemi A1	181 Ta Tanalum 73		Ce Cerium	Th Torism
						48 Tī Titanium 22	. 91 Zr Zrcomum 40	178 Hf Hathrum 72			nic mass nbol nic) number
ř ř ř						Sc Scandum 21	88 > ration 90	La Londonium 57	Ac Actinium tel	l series series	x = relative atomic mass X = atomic symbol b = proton (atomic) number
				9 Be Benfum 4	24 Mg 	Ca Caterna 20	Strontom	Ba Barkum	Ra Radem 88	*58-71 Lanthanoid series 190-103 Actinoid series	د × « × ×
583123		-		د الم ² الم ²	Na Sodom	39 K Potassum 19	BB Rb Rubdom 37	CS Cersum	Fr francism 87	*58-71 L +90-103	Key

1.	(i)	Use th	e Periodic Table to answer this	question.		
		(a)	State the total number of elements of the Periodic Total		1	
		(b)	Name an element that is a lice	quid at r.t.p.		
		(c)	Name the element that is the gas at r.t.p.	e least dense		
		(d)	Name the element that is the non-metal.	most reactive		
		(e)	Give the atomic mass of the the symbol Ir.	element with	***************************************	
		(f)	Name the element that has containing 12 neutrons.	stable atoms		
		(g)	Clean, dry air contains sever Name the group to which the abundant of these elements b	e third most	-	
	×	(h)	Name one of the elements in the known as Aragonite.	ne compound	[8]
	(ii)		lot and cross (Lewis) diagrams ices named below.	showing the ions	or molecules in th	
			sodium fluoride, NaF	fluorid	e gas, F,	
				(X	•	

TOTAL MARKS [10]


2.			substances that are made up of two or more different elements. exist as salts or molecular compounds.
	(a)	(i)	Give the chemical name for common salt.
			[2]
		(ii)	Name the type of bonding that is found in salts.
			[1]
		(iii)	Complete the word equation by inserting one word into each blank.
			acid +
	(b)	This que	estion is about covalent and ionic compounds. Use the words printed

in bold to fill in the blanks.

•	type of co	mpound
physical property	covalent	ionic
The melting point of the compound is usually high or low	36C	
A compound that is a solid at room temperature can be dissolved in water yes or no (exclude ALL sugars)		
The compound will conduct electricity when it is in the form of a liquid yes or no	×	

[3]

(c) The graph shows the solubility curves for different substances.

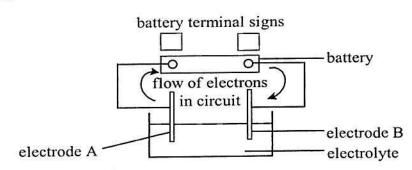
Use the graph to determine solubility. .

(i)

Which is the most soluble substance at 10°C, potassium chle potassium nitrate or sodium nitrate?	orate
State the solubility of ammonium chloride (NH ₄ Cl) at 80 °C.	
	[2

TOTAL MARKS [10]

3.		n temper al equati	ratures iron(III) oxide reacts with aluminium metal according to the on.
	(a)	(i)	Balance the chemical equation.
			$Fe_2O_3 + $ $Al \longrightarrow $ $Fe + $ $Al_2O_3 \Delta H = -510 kJ [2]$
		(ii)	Name the substance that is reduced in the reaction.
		(iii)	State the purpose of Al in the reaction.
			[1]
		(iv)	Explain what the symbol $\Delta H = -510 \text{kJ}$ means.
		(v)	Find the mass of iron which will be produced if 2.50 kg of iron(III) oxide is reacted.
	÷ &		
			[2]
	(b)		by is a mixture of metals. Iron is used to make various kinds of steel.
		(i)	Name one metal that can be added to iron to make steel.
			[1]
		(ii)	Give a benefit of adding other metals to iron to make the alloy steel.
			[1]
		(iii)	A common non-steel alloy is bronze. Name the metal which is added to copper to make bronze.
			[1]
			TOTAL MADES 1101


BLANK PAGE

	obse	rvations		acid	base	
	taste	sour and turns blue litr	nus red			
	displ	aces ammonia from its	salt			
	react	s with iron giving hydr	ogen			
(c)	The d	iagram shows the maki	ng of a soluble sa	alt.		
(c)	coj	iagram shows the making oper(II) carbonate is do not not a to hydrochloric acid	ng of a soluble sa fizzing is see as a gas is giv	en		copper()
(c)	coj	oper(II) carbonate is	fizzing is se	en		100 to 10

4.

Explain why, at carbonate remain	the end of the ons in the beaker i		on, some
-			
(i)			
State how the emixture.	excess copper(II)	carbonate is	removed
allow to Alexand to	Der AGES DOWN CO. 75		
Describe how cry after the excess of	ystals of the salt opper carbonate	can be obtaine has been remo	d from th ved.

The diagram shows the electrolysis of molten sodium chloride.

(a)	(i)	Copper was chosen because it is an excellent conductor of electricity.
		State another reason why copper is chosen as the conductor.

(ii) On the diagram, write the battery terminal signs (+ and -) in the two boxes. [1]

(iii) Use your knowledge about the flow of electrons in an electrolysis circuit to give the name of electrode A.

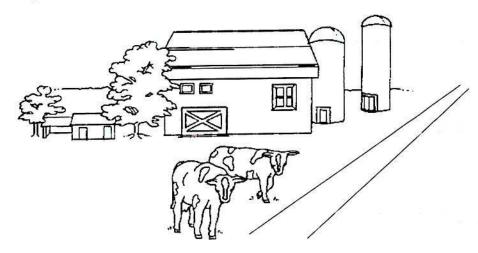
[1]

[1]

(iv) The current in the wires is caused by the movement of electrons. State the cause of the current in the electrolyte.

[1]

- (b) A student wants to electroplate a piece of copper with silver metal.
 - (i) Suggest a suitable electrolyte for electroplating copper.


[1]

(ii) Explain where, in the diagram, the piece of copper to be electroplated should be placed.

______[1]

	(11)	which both of these compounds belong.	nologous series to
		Name:	
		general formula:	[2]
(c)	Name natura	the carbon compound formed that forms the large	gest component of
	1		[1]
(d)	Name	the first member of the alkene and alcohol series.	
	alkene	e series	
	alcoho	ol series	[2]
		ТОТ	AT MADIZO (10)

7. The diagram shows a farm next to a water supply.

Over a period of time, the farmer notices that the water, in the river next to his farm, changes colour and he sees dead fish floating in it. He thinks that pollution has caused these changes.

a)	(1)	Define the term pollution.
	(ii)	Name a possible source of the pollution seen in the river.
	(iii)	Name ONE pollutant from the source mentioned in (a) (ii) contributes to the pollution seen in the river.
	(iii)	Explain the term eutrophication.
		8
		•

systen fuel in	n. A catalytic converter changes harmful pollutants in an automobile's ato less harmful substances by oxidation and reduction.
(i)	Name a poisonous pollutant made by the combustion of fuel that is oxidised by the catalytic converter.
	[1]
(ii)	Name the gas that results from the action of the catalytic converter on the pollutant named in (i).
	[1]
(iii)	Name the metal that can be used as a catalyst in the catalytic converter.
	[1]
(iv)	Name the environmental problem that the catalytic converter has little or no effect in reducing.
	[1]

8. While doing an inventory of chemicals with students, a chemistry instructor comes across an old container of potassium metal. The students had heard of this metal and were very curious about what it could do. The instructor agrees to demonstrate some of its chemistry if the students could tell him what they already knew about it. Before any investigations the students agree to follow all instructions and safety precautions.

The students knew:

Potassium is stored in oil, is a soft, shiny grey, very reactive metal that they had heard can burn in water (were eager to see if this was true) and its compounds are soluble in water.

The instructor opens the container and shows the students that **the oil had drained away** and the **material** in the container is a **dull grey**. Using forceps the instructor removes a small cylinder of the grey material and scrapes off some of the grey surface matter with an ordinary table knife to reveal a shiny substance underneath. He easily cuts a small disk of the material from the cylinder shaped material.

Name	e the dull grey substance.	
The i	nstructor tests the grey material, state the colour of t	
(i)	flame test,	
(ii)	litmus in its aqueous solution.	r 15 36 45

(e)	When small pieces of the shiny metal were added to water a lilac-color flame was seen and the students heard a popping sound. The metal disappear into the water.											
	Sugge water.	est the name of the final product that was formed by the reaction, in the										
	No.	[1]										
(f)	small reasor	istructor agrees to show the curious students what would happen if a piece of the shiny potassium was added to hydrochloric acid. For safety is the instructor uses dilute acid and a small sample of the metal. During plent reaction between metal and acid, a new compound is formed.										
	(i)	Name this new compound.										
		[1]										
	(ii)	Give the name of the reagent used to identify the anion.										
		[1]										
g) .	Using the cor	the Periodic Table identify an element that could displace the cation in appound made in (f).										
		[1]										
9		TOTAL MARKS [10]										

121																				
THE REAL PROPERTY AND ADDRESS OF THE PERSON NAMED IN																				
7.6																				
																				7
THE PERSON NAMED IN																			1	,
The state of the s																				
																			The state of the s	Total I Rose