School Number	Candidate Number						
Surname and Initials							

CHEMISTRY

PAPER 3 3051/3

Wednesday 8 JUNE 2005 12.30 - 2.00 P.M.

Additional materials: Answer booklet Graph paper

MINISTRY OF EDUCATION NATIONAL EXAMINATIONS

BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION

INSTRUCTIONS AND INFORMATION TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your school number, candidate number, surname and initials at the top of this page as well as at the top of all lined paper submitted.

Answer ALL the questions in Section A in the spaces provided on the question paper and any TWO questions from Section B on the lined paper provided.

Equations and diagrams should be given wherever they are helpful.

Essential working must be shown.

The intended marks for each question or part question are given in brackets [].

Relative atomic masses are given in the Periodic Table of elements provided.

ADDITIONAL INFORMATION

s.t.p. (t = 0 °C, p = 760 mm Hg) The volume of one mole of gas at room temperature and pressure (r.t.p.) is 24,000 cm³.

FOR EX	AMINER'S USE
5	Section A
1	00 0000 gg
2	W.
3	80
4	
S	ection B
5	TO / 185 TO
6	
7	
TOTAL	5 100

This question paper consists of 12 printed pages and 4 blank pages.

13.5

				<u>Version version versi</u>				7	1	
		0	He He	Ne Ne No	Krypten 36	E Xe	R Fa		25 Lu 27	Lr. 103
		15		19 Fr France 7 23.5	80 Br Loner	ë ⊣	At Mannel 85		Yb Yb metern or	No. 201
		 }		16 O O O 19 19 19 19 19 19 19 19 19 19 19 19 19	Se Se	Tel Telenom	Po F		Tm Tm	Md Handson
		>	.:	Z Z a E G add	As .	Sb	Bi Bi	.	167 Er 68	Fm.
		≥ .		Si S	G G 6	Son as os	207 Pb		Ho Ho Femile 67	Es Enumbies
				= B] s A] E	² 2 3 3	In In	5 上 ¥		162 Dy Dymensium 68	, S
* 1			2002 S	<u> </u>	Z Zn %	E Cd	Hg.		호 다 ፤ 8	Bk 97
ements			. S	a n	± 0 € 0 €	A Ag	Par Au		Gd 3	£ 3
of the El	P.				3 Z 3	Pd Pd	2 4 £		Eu Eu	A Am
c Table	Group			74	8 0 3 ×	Ita Rh S	192 Ir 17	#2 ==	Sm Sm	P Z
The Periodic Table of the Elements			- ±]]	2 T I	Ru Resident	OS Osmano of	92 92	Pm 12	d J
Ĕ.			a .	1 	a Min	Tc Technology	186 Re Pariera 75		N Nd	ā⊃ j ≈
				·	3 0 5 2	Mo Motorina Motorina	184 W . W . Tungsten 74		141 Pr Presedention 59	Pa Pa
8.53			12 19		. > 12 Vandem	N Nb			85 2 88	# E }
					48 T. T. T	Zr Zroman 40	Hf Hf Haham			mic mass mbol micl number
	1.0				45 Sc Scandonn 21	. Y	139 La Lentenyen .	Ac Action 189	l series series	a = relative atomic mass X = atomic symbol b = proton (atomic) number
		=	n,	Be server A Mg	4 G 2 8	Sr Sr Sworten 38	Ba s	Ra .	*58-71 Lanthanoid series †90-103 Actinoid series	• × .
61		-		Na Na	73 Transistant	Rb Nedern	E S S	Fr Francium 87	•58-71 L +90-103	Key.
-	1	1	I .	1 (7)			22 23 24 2			

Section A

Answer all four questions in this section.

1.	This recipe is for banana nut bread. Nutritional values indi	-1.66
	(sucrose) per serving. The recipe serves 12.	cate 6.6 g of sugar
	to deliber per serving. The recipe serves 12.	

1/2 cup butter
11/2 cups sugar
2 eggs
11/2 teaspoons salt

1 teaspoon baking soda

1 cup mashed bananas 1½ teaspoons vanilla

11/2 cups chopped pecans

11/2 cups flour

(a) (i) Baking soda, NaHCO₃, is used to make the bread rise. It decomposes when it is heated.

 $2 \text{ NaHCO}_3 \rightarrow \text{Na}_2\text{CO}_3 + \text{H}_2\text{O} + \text{CO}_2$

Calculate the volume of carbon dioxide produced by one teaspoon (5 g) of baking soda at r.p.t. [A; C,12; H, 1; O, 16; Na; 23].

(ii) Name the ingredient in the recipe which can be replaced by potassium chloride.

[1]

(iii) Potassium ions are abundant in bananas.

State the oxidation number of the potassium ion.

[1]

[3]

-L- - \$

$$\begin{array}{cc} C_{12}H_{22}O_{11}+H_2O\rightarrow 2\ C_6H_{12}O_6\\ sucrose & glucose \end{array}$$

Calculate the mass of glucose produced from 6.6 g of sucrose.

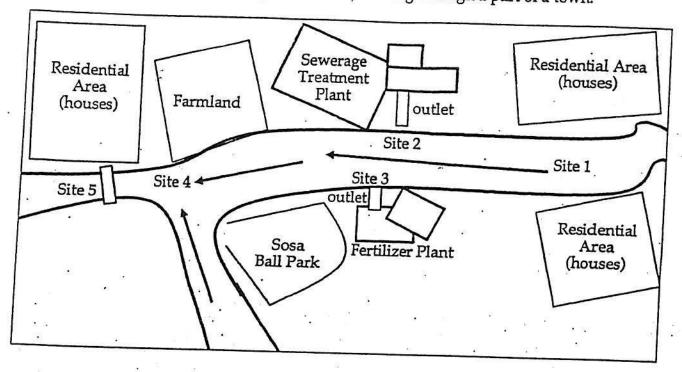
[2]

(c) The overall equation for energy production from glucose is given.

$$C_6H_{12}O_6 + 6 O_2 \rightarrow 6 CO_2 + 6 H_2O \Delta H = -2800 \text{ kJ}$$

Use the mass of glucose in your answer to (b) to find

(i) the mass of water produced from this mass of glucose,


[1]

(ii) the amount of heat energy produced, in kilojoules.

[2]

Total marks [10]

The diagram shows a polluted river flowing through a part of a town.

(a) Briefly explain how you would recognize a river polluted by phosphates.

(b) Chemistry students carried out a number of tests at the different sites.

Test Results

Site	phosphates	dissolved oxygen			
2002	mg/L ·	mg/L			
1	10.0	10.0			
2	22.0	4.0			
3	25.0	3.5			
4	28.0	2.2			
5	27.0	8.0 ′.			

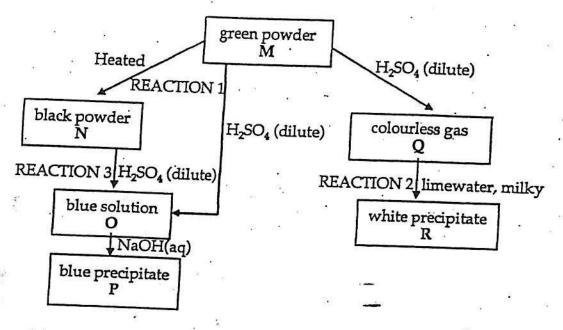
5 mg/L units on the y-axis.

[4]Identify the site which shows the largest change in phosphate concentration; dissolved oxygen concentration. (iii) Use the information given to identify the source which is the (iv) greatest contributor to the phosphate pollution. State where phosphates enter the river and give the source of the (c) phosphates. Name another pollutant which may enter the river at site 4. (d). Total marks [10]

3.		Electro _l	plating is the co ytic cell.	oating of an objec	t with a th	in layer of r	netal in an
	(a) (i) Before pla that was u	stic automobile b sed to electroplate	umpers, nar the old iron	ne the transi bumpers.	ition metal
82				72 = ¹⁰ (1	*		ran.
			Ĭ.			*	[1]
	,	· (i	i) Give two re	easons for the elec	troplating of	bumpers.	
				8 7 St	g (98)	**************************************	
			**				
			§				
	-						/4
	5						
		S.*.5.		-		3.5	[0]
	(Ъ)			ectrolytic cell to c	- N		[2]
#1 E3		2 20	Label the cat	e as an electrolythode and anode.	e. The anoc	ie is made (of silver.
*			2		39	s**	(21)
1.			30			18	
-	•		252	¥			
						ar N	
			2	* *			[4]
		(ii)	Write symbol cathode.	ic equations for t	he reaction	s at the ano	de and
	€ 30		Cathode		¥(6)		
			Cathoue				
		,	Anode			*	[2]
	(c)	Give	one industri	ial application	of electro	lysis other	than
		electro	oplating.	50.00 8		y onici	Liaii
		7.5	9.				100
			9				[1]
						Total mark	re [10]

Methanol may be used to produce gasoline. A special catalyst (ZSM-5) may 4. be used to assist the reactions. The reactions are: Stage 1 methanol → water + dimethyl ether (CH₃)₂O Stage 2 (CH₃)₂O \rightarrow ethene + water Stage 3 ethene \rightarrow hydrocarbons of C₆ to C₁₂ Write the chemical formulae of the organic compounds methanol and (a) ethane. Methanol [2] ethane Give a name for the type of reaction that takes place in stage 3. (b) Draw the structural diagram of a molecule having six carbon atoms (c) that could be formed in stage 3. [1] Ethanoic acid is a weak acid. Two substances that can react with it are (d) some metals and alcohols. Explain the term weak acid. [1] Write a balanced chemical reaction for ethanoic acid with (e) [2] magnesium, (i) . [2] methanol. (ii)

Name the type of compound formed in (e)(ii).


[1]

(iii)

Section B

Answer any two questions.

The diagram represents a number of chemical reactions.

(a) Name the substances M, N, O, P, Q and R.

[6]

- (b) Using the reagents named write balanced equations for
 - (i) REACTION 1
 - (ii) REACTION 2
 - (iii) REACTION 3

[6]

[4]

- (c) The blue solution, O, was electrolysed using graphite rods. A brownish-pink solid was deposited at the cathode.
 - (i) Name the solid deposited at the cathode.
 - (ii) Write the ionic half reaction that takes place at the cathode.
 - (iii) Name the gaseous product formed at the anode.
- (d) Using information in (c)(ii) calculate the mass of solid produced if 4 moles of electrons were transferred. [2]

(e) An ore of copper contains copper carbonate. If electricity is not available for the electrolysis process, suggest how metallic copper could be obtained from its ore. [2]

Total marks [20]

6.	n	A hydrocarbon X contains 82.76% of carbon by mass and has a nolecular mass of 58. The hydrocarbon X slowly reacts with a the presence of diffused sunlight.	a relative chlorine
(a)	(i)	Find the percentage of hydrogen in the compound.	to and
	(ii	Determine the empirical formula of X.	3
	(ii	i) Determine the molecular formula of X.	. [6]
(Ъ)	(i)	Define the term isomer.	[2]
	(ii)	Draw and name the structural formula of X and draw or isomer that has this formula.	e other
(c)	Cias	te two pieces of evidence, from the formula, that are usify X into a specific homologous series and state the M , the member of this homologous series.	sed to of the [2]
(d)	(i)	Write an equation for the reaction of hydrocarbon X chlorine in diffused sunlight.	with [2]
	(ii)	Name this type of reaction.	[1]
(e)	(i)	Describe the flame that is seen when this hydrocarbon bu a limited supply of oxygen.	rns in [1]
	(ii)	Name the toxic gas formed in the conditions described in (i). [1]
9	(iii)	Find the volume of oxygen which will be used up when mole of hydrocarbon X burns in excess oxygen.	n one [2]
•	*	Total mark	s [20]

-

A student took a lump of dirty limestone with a mass of 1.0 g and reacted it
with an excess of hydrochloric acid. The carbon dioxide gas produced by the
reaction was collected and its volume measured at regular intervals at r.p.t.

The experiment was repeated using 1.0 g of small pieces of dirty limestone.

The experiment was repeated a third time using 1.0 g of finely powdered dirty limestone.

The student's data is recorded as shown.

time/min	0	1	2	3	4	5	6	7	8	9	10	11	12
expt A/cm³	0	11	22	33	43.5	53.5	63	71	77.5	79.5	80	80	80
expt B/cm³	0	18.5	37.5	54.5	67.5	74.5	78.5	80	80	80	80	80	80

- (a) Draw and label graphs for experiment A and experiment B using the same axes. [8]
- (b) On the same graph draw a curve for the expected results when the student uses 1.0 g of finely powdered dirty limestone. Label this graph C. [2]
- (c) (i) Write a balanced equation for the reaction that occurs in all three experiments. [2]
 - (ii) Calculate the number of moles present in 1 g of pure carbonate, CaCO₃. [2]
 - (iii) Use your equation in (c)(i) to find the number of moles of calcium in 1 g of the pure limestone.

Determine the volume of CO₂ produced from the pure sample at r.t.p. [2]

- (iv) Calculate the number of moles of carbon dioxide present in the maximum volume of carbon dioxide given off in experiment A from 1 g of dirty limestone. [1]
- (v) Find the percentage of calcium carbonate in the limestone. [2]
- (d) Use your knowledge of the kinetic theory to explain why dry ice takes energy from its surroundings when it becomes a gas. [1]

Total marks [20]