School Number	Candidate Number				
Surname and Initials					

CHEMISTRY

PAPER 3 3051/3

Wednesday

6 JUNE 2007

12.30 - 2.00 P.M.

Additional materials: Answer booklet Graph paper

MINISTRY OF EDUCATION NATIONAL EXAMINATIONS

BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION

INSTRUCTIONS AND INFORMATION TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your school number, candidate number, surname and initials in the spaces provided at the top of this page as well as at the top of all lined paper submitted.

Answer ALL the questions in Section A (1-4) in the spaces provided on the question paper and any TWO questions from Section B on the lined paper provided.

Equations and diagrams should be given wherever they are helpful. Essential working must be shown.

The intended marks for each question or part question are given in brackets [].

Relative atomic masses are given in the Periodic Table of elements printed on page 2.

ADDITIONAL INFORMATION

s.t.p. $(t = 0 \, ^{\circ}\text{C}, p = 760 \, \text{mmHg})$ The volume of one mole of gas at room temperature and pressure (r.p.t.) is 24 000 cm³.

FOR EX	AMINER'S USE
S	Section A
1	
2	10 10 10 10 10 10 10 10 10 10 10 10 10 1
3	й <u>и</u>
4	
S	ection B
5	
6	3
. 7	
TOTAL	

This question paper consists of 13 printed pages and 3 blank pages.

The Periodic Table of the Elements

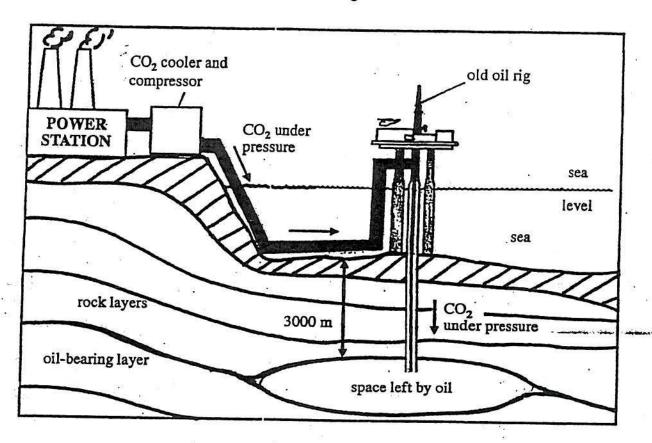
Group	0 III IV V VI III	He He He	11 12 14 16 19 20 B C N O F Ne	Al Si P S Cl Ar Abmitton 13 14 15 15 10 11 Ar 13 15 10 11 Ar 15 10 11 15 11 15 11 11 11 11 11 11 11 11 11	\$1 \$2 \$5 \$6 \$9 \$9 64 \$65 70 73 75 79 79 V Cr Min Fe Co Ni Cu Zn Ga Ge As Se 20 20 25 26 26 As 26 As Session 23 25 25 26 26 As 25 25	Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sh Te Holland Nb Mo Tc Ru Rh Pd Ag Cd In Sn Sh Te	181 184 186 190 192 185 197 201 204 207 209 204 207 209 204 207 209 204 207 209 204 207 209 204		140 141 144 150 152 157 159 162 165 167 169 173 175	222 228
		H H			52 · 55 · 56 Cr Mn Fe contant Languages 25 bes	Te Ru Technism Petrolim	184 186 150 W Re Os nessan Peradan 26-minn		Nd Pm Notesteen Permetteen 80	# F
					5 > §	a N dN		Ac Acinium t	140 Ce Cebum	8 = relative atomic mass 232
	=			Na Mg Sodom Happesium	TK Ca Cacon 19	Rb Sr Sr Newform Strendom 3	CS Ba Section SS	Fr Ra Francium Radum.	*58-71 Lanthanoid series 190-103 Actinoid series	

Section A

					• -		
1.	Iro of	n is ext	racted by the blast fur	mace process	. Aluminium is ex	stracted by the	proces
÷	(a)	(i)	State what this aluminium.	indicates abo	out the relative r	eactivity of in	on an
			8 M				_ [1
	39	(ii)	Explain why calc furnace.	ium carbona	te is added to the	iron ore in th	-5503
		N		•		##	(7.955)
			71				_ [1]
	(b)	(i)	Balance the reaction	¥0	9		
		9-	Fe ₂ O ₃ +	.CO →	Fe + C	O2	[2]
		(ii)	Name the substance	e in the react	ion that is the redu	cing agent.	
	20%	8		***	8 K	NEA (E	
	•						_ [1]
		(iii)	Calculate the mass iron(III) oxide.	of iron pr	oduced from 16	tonnes of the	pure
		¥.			(*)		
						¥	
		上級		8 8	s u		[2]
0%	(c)	Give a	factor that is likely	y to affect t	he cost of makin	g aluminium u	ising
	*		No. of Co.	rā			×
56	12	1 B			X		[1]
	(d)	Write electro	the ionic half equat lysis of aluminium.	ion for the	reaction at the o	athode during	the
	167	<u> </u>	2 8 ************************************	50 20 50			[2]
			-	ž.			(I)
			NA S B			Total marks	[10]

Alcoh	ols are	very important chemical compounds.	
(a)	Ethan	ol is made by the fermentation of glucose.	
	(i)	Name the organism that causes the fermentation of glucose to ethanol.	produce
			[1]
	(ii)	Suggest a suitable temperature for this reaction.	0.0
	ř		[1]
	(iii)	Write a balanced equation for this reaction.	
			[2]
	(iv)	State one use of ethanol, other than in alcoholic drinks.	
	9		[1]
(b)	Esters	are another group of organic compounds.	
	(i)	Name ONE commercial use of esters.	
¥			[1]
	#87 E1		
	(ii)	Name an ester and write its formula.	
		name	
		formula	[1]
	(iii)	Name the class of compounds that react with alcohols to form	
			[1]

(iv) Complete the table showing the differences in properties of an ester and a salt. [2]


property	ester	salt
type of bonding it contains	,ī	
soluble or insoluble in water		

Total marks [10]

		from the Earth's crust is an abundant source of power. However, when it is d, coal produces large amounts of pollutant gases.								
	(a)	Whe	n coal is burned, carbon in the coal becomes the gas carbon dioxide.							
8			gest the names of two other gases that are produced from the elements gen and sulphur when coal burns.							
		(i)	nitrogen [1]							
		(ii)	sulphur [1]							
	(b)		two different pollutant effects that the gases in part (a) have on the onment. Each time, match the name of the gas to the effect it causes.							
		(i)	pollutant effect							
		结合	gas causing this effect [1]							
		(ii)	pollutant effect							
	*		gas causing this effect							

3.

(c) The gas carbon dioxide can be removed from exhaust gases of a coal-fired power station. The gas is cooled and compressed. The carbon dioxide is pumped down the pipes of an old oil rig into the space left after oil has been extracted. This is shown in the diagram.

(i) State the effect that cooling and compressing will have on the carbon dioxide.

__ [1]

This process is expensive to carry out. Important industrial chemicals might be made from the other pollutants in the power station emissions, and sold. Name an important chemical that could be made from

	(1.00 p. 1.00			
		,		
Xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx			**	

(iii) the sulphur compounds in the emissions.

the nitrogen compounds;

(ii)

[1]

[1]

d) Oi	l and coal are fossil fuels. They are non-renewable sources of er	nergy.	
Ex	plain what is meant by		
(i)	fossil fuels		
	ji		
\$\$8		[1]	
(ii)	non-renewable		
		[1]	
(iii)	Name one renewable source of energy.	*	
920		[1]	
	Total	l marks [10]	

- On many occasions chemists are required to carry out qualitative analyses.
 - (a) (i) Identify the flame colour that would be produced by the metal in each substance.

METAL COLOUR

potassium nitrate in a match head [1]

sodium carbonate in washing soda [1]

calcium carbonate from a marble tile [1]

(ii) Name the metal that produces a blue-green flame.

(b) calcium carbonate + solution A → salt B + gas C + liquid D

reacts with silver nitrate turns limewater milky

Use the reaction scheme to help you to name

solid E

(i) solution A,

white precipitate F

- (ii) salt B, _____
- (iii) gas C,
- (iv) liquid D,
- (v) substance E,
- (vi) white precipitate F. ______[6]

Total marks [10]

turns anhydrous

copper sulphate blue

[1]

Section B

Choose two of the three questions.

5.	(a)	Sulphuric acid is made from sulphur dioxide by a catalytic process. The
		reaction is reversible.

 $...SO_2 + ...O_2 \implies ...SO_3 \Delta H = -197 \text{ kJ/mol}$

- (i) Name this industrial process. [1]
- (ii) Rewrite the equation so that it is balanced. [2]
- (iii) Explain the meaning of $\Delta H = -197 \text{ kJ/mol}$. [1]
- (iv) Name a catalyst that can be used in this process. [1]
- (b) Suppose that a mixture of sulphur dioxide and oxygen, in presence of the catalyst, is allowed to reach equilibrium with the product, sulphur dioxide.

State and explain the effect on the amount of sulphur trioxide formed if

- (i) the concentration of oxygen in the mixture of gases is increased; [2]
- (ii) the temperature is raised. [1]
- (c) State one commercial use of sulphuric acid. [1]
- (d) State ONE observation that would be seen when concentrated sulphuric acid is added to sucrose (table sugar). [1]
- (e) Ammonia is manufactured by the Haber process and the equation for the reaction is

$$N_2(g) + 3H_2(g) \Rightarrow 2NH_3(g)$$

Nitrogen and hydrogen are reacted under a pressure of 200 atmospheres, in the presence of powdered iron and at a temperature of 450°C.

- (i) State one large-scale source of hydrogen and one large-scale source of nitrogen. [2]
- (ii) Using your knowledge of the kinetic theory of gases, explain the need for —the high pressure,
 - the high temperature,
 - the powdered iron. [6]

(f) Calculate the volume of ammonia produced at r.t.p. from 30 moles of hydrogen at 100% yield. [2]

Total marks [20]

- An unknown material may be identified by finding its percentage composition by mass. This method of analysis has many applications.
 - (a) (i) Caffeine is a mild-acting drug found in coffee and tea. Determine the percentage of carbon in caffeine, C₈H₁₀N₄O₂. [1]
 - (ii) Carbon found in natural substances consists of two isotopes, C¹² (99%) and C¹³ (1%). Calculate the relative atomic mass of carbon. [2]

Succinic acid is present in lichens found on trees. It is extracted from these organisms to manufacture perfumes and dyes. The percentage composition of succinic acid is 40.68% C, 5.08% H and 54.24% O. Its molecular mass is 118.

- (iii) Determine its empirical formula.
- (iv) Determine its molecular formula. [2]
- (v) Succinic acid is a carboxylic acid. Showing all the bonds between the atoms, draw the structural formula of the group of atoms in succinic acid that makes the molecule acidic. [1]
- (vi) Ibuprofen, C₁₃H₁₈O₂, an active ingredient in pain relievers has a molar mass of 206 g. Calculate the number of moles present in 33 g of ibuprofen. [2]
- (b) In exothermic reaction used to warm food, magnesium undergoes a super corrosion process as shown by the equation:

$$Mg(s) + 2H_2O(\ell) \rightarrow Mg(OH)_2(s) + H_2(g) \Delta H = -353 \text{ kJ}$$

Calculate the mass of magnesium required to make 21.9 g of magnesium hydroxide. [3]

- (c) Chemistry is involved in processes observed every day. Use the Kinetic Theory of Matter to explain each of these observations.
 - (i) The contents of aerosol cans are under pressure. The message Do not incinerate is printed on the outside.
 - (ii) Balloons filled with helium rise, those filled with carbon dioxide sink.
 [2]
 - (iii) Liquids cannot be compressed, but gases can be compressed. [2]

Total marks [20]

[3]

7. Two pieces of fresh calcium of 2.0 g each were used in separate experiments. In one experiment a piece was added to excess water.

In the other experiment a piece was added to excess dilute hydrochloric acid.

The volume of hydrogen produced was recorded at 10 s intervals. The results are given below.

time/s	0	10	20	30	50	60	80	90	100	110
experiment 1 volume of hydrogen/cm³					¥ (*)		(X 1)			
	0	6	12	20	40	54	88	109	119	120
experiment 2 volume of hydrogen/cm ³	22 EL						12			
	0	24	50	80	116	120	120	120	120	120

- (a) (i) Plot the two graphs of the volumes of hydrogen produced with time on the x-axis. [6]
 - (ii) Use the graph to explain which reaction was the most rapid at the start. [2]
 - (iii) Use the graphs to determine the volumes of hydrogen produced at 40 s for water and at 70 s for the acid. [2]
 - (iv) Sketch on the same graph the curve that would be expected if the same mass of calcium was reacted with water which was colder than the original water experiment. [2]
 - (v) Predict the volume of hydrogen which would have been formed in 60 s if the same mass of calcium had reacted with an excess of a higher concentration of hydrochloric acid. [1]
- (b) (i) Write a chemically balanced equation for the reaction between calcium and water. [2]
 - (ii) Calculate the number of moles in 120 cm³ of hydrogen produced at r.t.p. in the experiment. [2]
 - (iii) Use the equation in (b)(i) to calculate the mass of calcium required to produce 10 grams of hydrogen. [3]

Total marks [20]

BLANK PAGE