

# **CHEMISTRY**

PAPER 3 3051/3

Monday

1 June 2015

12:00 noon-1:30 P.M.

Additional materials: Graph paper

# MINISTRY OF EDUCATION NATIONAL EXAMINATIONS

BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION

## INSTRUCTIONS AND INFORMATION TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your school number, candidate number, surname and initials at the top of this page as well as at the top of all lined paper submitted.

Answer ALL the questions in Section A in the spaces provided on this question booklet and any TWO questions from Section B on the lined paper provided at the back of this question booklet.

Equations and diagrams should be given wherever they are helpful. Essential working must be shown.

The intended marks for each question or part question are given in brackets [].

Relative atomic masses are given in the Periodic Table printed on page 2.

### ADDITIONAL INFORMATION

s.t.p. 
$$(t = 0 \,{}^{\circ}\text{C}, p = 760 \,\text{mmHg})$$

The volume of one mole of gas at room temperature and pressure (r.p.t.) is 24000 cm<sup>3</sup>.

| For I | Examiner's Use |
|-------|----------------|
|       | Section A      |
| 1     |                |
| 2     |                |
| 3     |                |
| 4     |                |
|       | Section B      |
| 5     |                |
| 6     |                |
| 7     |                |
| TOTAL |                |



This question paper consists of 11 printed pages, 4 lined pages and 1 blank page.

|        | 0 | F 4           | 70 Z0 | Neon          | 4°                    |                | 2 ¥             | Aypton        | ××             |           | Ru             |                           | 175                                                 | Lu                                    | د                                               |
|--------|---|---------------|-------|---------------|-----------------------|----------------|-----------------|---------------|----------------|-----------|----------------|---------------------------|-----------------------------------------------------|---------------------------------------|-------------------------------------------------|
|        | = |               | 2 9   | e             | s                     | B _            |                 | 36            |                | 2         |                | 98                        |                                                     |                                       | 1                                               |
|        | 5 |               | er er | Fluorine 9    | 8 D                   | 17<br>Chloring | ខ្មួ            | 35            | I popul        | ß         | Attacher       | 88                        | Ē                                                   | Yb<br>merbium                         |                                                 |
|        | 5 |               | 91    | 0 owe         | g S                   | 16 Jupon       | Se              | الم<br>123    |                | 25        | Polonium       | æ                         | 691                                                 | E                                     | Μd                                              |
|        | > |               | 2 ;   | Natrogen<br>7 | E <b>C</b>            | 15             | As              | 33            |                | 209       |                | 8                         | 167                                                 | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | F.                                              |
|        | 2 |               | 20    | و وسود        | S. S. S.              | ₹ F            | Ge              | 119           | S r            | 207       | G 3            | 85                        | 29.7                                                | Holmium<br>67                         | Es                                              |
|        | ≡ |               | = 0   | S Bogs D      | 27<br>AI<br>Abminium  | 55             | Ga              | 31            | In<br>Indon    | 202       |                | ō                         | 162                                                 | Dyspressum<br>66                      | Cf                                              |
| 2      |   |               |       |               |                       | 1              | LZ<br>Z         | 112           | P Seg          | 102       | Mercury        | 8                         | 159<br>Tb                                           | Terbium<br>65                         | BK                                              |
| Liemen |   |               |       |               |                       | 64             | Cu              | 108           | Ag<br>Sher     | 197       | 79 84<br>864   | :                         | rsı<br>Gd                                           | Gadolinium<br>64                      | Cm<br>Griss                                     |
| Group  |   |               |       |               |                       | 89             | Neter N         | 901           | Pd<br>Patadom  | ≅ ⊈       | Purnum 78      |                           | 152<br>Eu                                           | Europiem<br>63                        | Am                                              |
| Group  |   |               | 7     |               |                       | 59             | Co<br>Coban     | 5 E           | RINDGrum       | 192<br>Ir | Indian 77      |                           | ost<br>Sm                                           | Samarlum<br>62                        | Pu                                              |
|        |   | Hydropen<br>1 |       |               |                       | 35             | Fe Fe           | 5 5           | Ε              |           | Osmium<br>76   |                           |                                                     | Promethium<br>61                      | Np                                              |
|        |   |               |       |               |                       | 55             | Mingeness<br>25 | 1             | Technetium 43  | 186<br>Re |                |                           | N N                                                 | Neodymium<br>60                       | D 0000                                          |
|        |   |               |       |               |                       | 25             | E               | 8 2           | E              |           | Tungsten<br>74 |                           | ₹ &                                                 | Presendymium<br>59                    | Pa<br>Protectivism<br>91                        |
|        |   |               |       |               |                       | 15 2           | Ę               | 8 5           | Nobbeni<br>41  |           | Tantalum<br>73 |                           | § છે ;                                              | 58                                    |                                                 |
|        |   |               |       |               |                       | s t            | Titanium<br>22  | 16<br>Zr      | Zrconium<br>40 |           | Hafnium<br>72  | 24                        |                                                     | nic mass                              | abol<br>nic) number                             |
|        |   |               |       |               |                       | 45             | Scandum<br>21   | & <b>&gt;</b> | Yttrlum<br>39  | ال ته     | S7 .           | Actinium t                | series                                              | a = relative atomic mass              | X = atomic symbol<br>b = proton (atomic) number |
| =      | = |               | Be    | 7 24          | Mg<br>Magnesium<br>12 | \$ 6           | _               |               |                | Ba        | Serum<br>56    | 226<br>Ra<br>Radoun<br>88 | *58-71 Lanthanoid series<br>190-103 Actinoid series |                                       | رً ×<br>×                                       |
| _      |   |               | ַ בּי | 23            | Na<br>Sodium          |                | E               | Rb<br>Rb      |                | ឆ ស       | SS             | Fr<br>Francium<br>87      | 58-71 Li                                            | L                                     | Key                                             |

585124

# EXAMINATION

| School No.         | Candidate No. | Level:      | For Examiner's |  |  |
|--------------------|---------------|-------------|----------------|--|--|
| Subject Number &   | Title:        | Paper:      | Use            |  |  |
| Surname & Initials | :             | Section:    |                |  |  |
| Signature:         | Da            | te: Qu. No. |                |  |  |

| HHHH                                              |                                                   |             |                                                  |                                                   |                                                  |
|---------------------------------------------------|---------------------------------------------------|-------------|--------------------------------------------------|---------------------------------------------------|--------------------------------------------------|
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   | <del></del> |                                                  | <del></del>                                       |                                                  |
|                                                   |                                                   |             |                                                  |                                                   | <del>                                     </del> |
| <del>                                     </del>  |                                                   |             |                                                  | <del>                                      </del> |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   | <del></del>                                      |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
| <del>                                      </del> | <del>                                      </del> |             | <del>                                     </del> |                                                   |                                                  |
| <del>                                     </del>  |                                                   |             |                                                  |                                                   |                                                  |
| <del>                                      </del> |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   | <del>                                     </del>  |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |
|                                                   |                                                   |             |                                                  |                                                   |                                                  |

# MINISTRY OF EDUCATION BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION EXAMINATION

| School No.              | Candidate No. |       | Level:   | For Examiner's |
|-------------------------|---------------|-------|----------|----------------|
| Subject Number & Title: |               |       | Paper:   | Use            |
| Surname & Initials:     |               |       | Section: |                |
| Signature:              |               | Date: | Qu. No.  |                |



BLANK PAGE

585124 [Turn over

## SECTION A

Answer ALL questions in this Section

| (a) | (i)   | Define the chemical term isomer.                                                          |                   |
|-----|-------|-------------------------------------------------------------------------------------------|-------------------|
|     |       |                                                                                           | [2]               |
|     | (ii)  | Draw the two isomers of $C_4H_{10}$ and name them.                                        |                   |
|     |       |                                                                                           |                   |
|     |       |                                                                                           |                   |
|     |       |                                                                                           |                   |
|     |       | name name                                                                                 | [3]               |
| (b) | (i)   | Name the feature of a monomer which allows it to undergo a polymerization.                | ddition           |
|     |       |                                                                                           | [1]               |
|     | (ii)  | Write the general formula of a hydrocarbon monomer.                                       |                   |
|     |       |                                                                                           | [1]               |
|     | (iii) | Write the addition polymerization reaction that changes CH into the addition polymer PVC. | <sub>2</sub> CHCl |
|     |       |                                                                                           | [2]               |
| (c) | Name  | the ester formed from methanoic acid and ethanol.                                         |                   |
|     | 4     |                                                                                           | [1]               |
|     |       | TOTAL MARK                                                                                | KS [10]           |

| T      | itaniur | m exists  | within the Earth's crust as an ore called rutile (titanium dioxide).                                                    |    |
|--------|---------|-----------|-------------------------------------------------------------------------------------------------------------------------|----|
| T      | itaniur | n is extr | acted from its ore in a series of steps called the Kroll Process.                                                       |    |
| S      | tep 1   | Rutile i  | s liquefied (at 1 000°C)                                                                                                |    |
| Si     | tep 2   | Chlorin   | e gas is added to the liquefied rutile and titanium(IV) chloride forms                                                  | s. |
| Step 3 |         |           | m (IV) is reacted with sodium or magnesium metal in the presence of as (at 850°C) and titanium metal forms.             | of |
| (a)    | )       | (i)       | Write a balanced chemical equation to show the extraction of titanium from titanium(IV) chloride using magnesium metal. | )f |
|        |         |           | [2                                                                                                                      | ]  |
|        |         | (ii)      | Name the type of reaction used to extract titanium from titanium(IV chloride.                                           | )  |
|        |         |           | [1                                                                                                                      | ]  |
|        |         | (iii)     | State why argon gas is used.                                                                                            |    |
|        |         |           |                                                                                                                         | ]  |
|        |         |           | eries of metals, titanium is located just below aluminium and above ium is also more reactive than carbon.              |    |
| (b)    |         |           | why the titanium is not extracted using electrolysis even though it is ctive than carbon.  [1]                          |    |
|        |         |           | e most abundant metal found in the Earth's crust. Aluminium is ore (bauxite) using electrolysis.                        |    |
| (c)    | 30      | Write bal | anced half-reactions to show what happens                                                                               |    |
|        | (       | (i)       | at the anode;                                                                                                           |    |
|        |         |           | [2]                                                                                                                     |    |
|        | (       | (ii)      | at the cathode.                                                                                                         |    |
|        |         |           | [2]                                                                                                                     |    |
|        |         |           |                                                                                                                         |    |

585124

| (iii) | State why aluminium ore is dissolved in molten cryolite. |
|-------|----------------------------------------------------------|
|       |                                                          |
|       | TOTAL MARKS [10]                                         |

| 3. | the vol<br>exact s<br>were a<br>of titra | ent dissolved 6.00 g of impure potassium hydroxide (KOH) in pure water and tume was made up to 1 000 cm <sup>3</sup> . The student then measured out 25.0 cm <sup>3</sup> of this solution and added it to a conical flask. A few drops of phenolphthalein solution dded to the flask's alkali solution. The student carried out the acceptable method tion and found that 28.3 cm <sup>3</sup> of 0.0400 mol dm <sup>-3</sup> sulfuric acid was needed to ize the alkali. |                                                                                            |                 |  |  |  |
|----|------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------|--|--|--|
|    | (1 000                                   | $cm^3 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | L or 1 dm <sup>3</sup> )                                                                   |                 |  |  |  |
|    | The eq                                   | uation fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | r this reaction is shown below.                                                            |                 |  |  |  |
|    |                                          | 2KOH(                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (aq) + $H_2SO_4(aq) \longrightarrow K_2SO_4(aq)$ + $H_2O(1)$                               |                 |  |  |  |
|    | (a)                                      | (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Calculate the number of moles in 28.3 cm <sup>3</sup> of 0.0400 mol dr sulfuric acid.      | n <sup>-3</sup> |  |  |  |
|    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            | [2]             |  |  |  |
|    |                                          | (ii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Calculate the concentration of the pure KOH in solution.                                   |                 |  |  |  |
|    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            | [2]             |  |  |  |
|    |                                          | (iii)                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Calculate the mass of pure KOH in the solution.                                            |                 |  |  |  |
|    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | I                                                                                          | [2]             |  |  |  |
|    |                                          | (iv)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Calculate the mass of the impurities in the impure KOH.                                    |                 |  |  |  |
|    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [                                                                                          | 1]              |  |  |  |
|    | 97                                       | (v)                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Describe how a pure sample of solid $K_2SO_4$ is obtained from solution                    | n.              |  |  |  |
|    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |                 |  |  |  |
|    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                            |                 |  |  |  |
|    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | [2                                                                                         | 2]              |  |  |  |
|    |                                          | (vi)                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | State the colour change of the phenolphthalein that is seen at the end-point of titration. | 1e              |  |  |  |
|    |                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | from to r                                                                                  |                 |  |  |  |

TOTAL MARKS [10]

|     |       | mmonia does not yield much product from the reactants. The reac<br>monia is both reversible and exothermic.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | LION |
|-----|-------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| (a) | (i)   | Write a balanced equation for the formation of ammonia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |      |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [3]  |
|     | (ii)  | In the formation of ammonia, state whether the reactants or prod-<br>have greater bond energy.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ucts |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [1]  |
|     | (iii) | Name a source of one of the reactants.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |      |
|     |       | I State of the sta | [1]  |
|     | (iv)  | State a use for ammonia.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |      |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [1]  |
|     | (v)   | Name one factor that could increase the yield of product and exp why this factor increases the yield.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | lain |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [2]  |
|     | (vi)  | Calculate the volume of ammonia produced from 1.5 moles hydrogen gas at r.t.p.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of   |
|     |       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | [2]  |
|     |       | TOTAL MARKS [                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 10]  |

#### SECTION B

Answer only TWO questions from this Section.

| 5. | Fossil fuels are non-renewable resources. The fractional distillation of crude oil yields |
|----|-------------------------------------------------------------------------------------------|
|    | many fractions of hydrocarbons, ranging from lightweight volatile fractions to heavier    |
|    | less volatile fractions. Reactive simpler fractions are more commercially demanded        |
|    | than heavier fractions. Therefore, in order to meet the consumer demands, heavier         |
|    | fractions are reprocessed by cracking.                                                    |

| (a) Write a balanced chemical equation to show the cracking o | f pentane. | [2] |
|---------------------------------------------------------------|------------|-----|
|---------------------------------------------------------------|------------|-----|

(ii) Name a catalyst used in a catalytic cracking process. [1]

Ethane and propane can also be obtained by cracking heavier fractions of crude oil. Propane is a saturated hydrocarbon used commercially in The Bahamas as cooking gas.

- (b) (i) define the term saturated hydrocarbon. [1]
  - (ii) Draw the full structural formula of propane. [2]
  - (iii) Write a balanced equation for the complete combustion of propane. [2]
  - (iv) What volume of carbon dioxide gas will be produced at r.t.p. if 2 g of propane is burnt? [2]

In The Bahamas, plastic bags have replaced paper bags as the preferred material for grocery bags.

Ethene can be polymerized to polythene (polyethylene). Polythene (polyethylene) is a synthetic polymer that is widely used in packaging, plastic bags and plastic films.

- (c) (i) Draw a portion of the polythene molecule to show THREE monomers. [2]
  - (ii) Name the type of polymerization reaction showed in (c) (i). [1]
  - (iii) State ONE reason why plastics should be recycled. [1]

A hydrocarbon was analysed and found to contain 82.8% by mass of carbon and had a molecular mass of 58.

- (d) (i) Determine the empirical formula of the hydrocarbon. [4]
  - (ii) Determine the hydrocarbon's molecular formula. [2]

TOTAL MARKS [20]

- 6. The chemistry of fireworks is based on the theory of combustion. Fireworks contain oxidizing agents, such as potassium chlorate (KClO<sub>3</sub>) or potassium nitrate (KNO<sub>3</sub>), metals that produce coloured glows when heated and a fuel.
  - (a) Write the symbols of the metals that produce lilac and apple green flames in commercially produced fireworks. [2]
  - (b) Potassium chlorate is an oxidizing agent that supplies the oxygen needed for the mixture inside the firework to burn.

The equation for this reaction is shown below.

$$2KClO_3 \longrightarrow 2KCl + 3O_2$$

Calculate the mass of KClO<sub>3</sub> needed to make 48.0 kg of O<sub>2</sub>. [3]

(c) The oxygen produced in the reaction reacts with sulfur and carbon to produce hot gases that expand rapidly causing the loud bang associated with fireworks.

The equation for this reaction is shown below.

$$S + O_2 \longrightarrow SO_2$$

- (i) Name the substance which acts as the reducing agent in the reaction.
- (ii) State the oxidation number of S in SO<sub>2</sub>. [1]
- (d) Potassium nitrate is also an oxidizing agent.
  - (i) Calculate the percentage of oxygen by mass in both KClO<sub>3</sub> and KNO<sub>3</sub>.
  - (ii) State whether KClO<sub>3</sub> or KNO<sub>3</sub> is the better oxidizing agent in the firework. [1]

(e) Metals are used to give fireworks their characteristic colours.

Identify the unknown metals used in fireworks and the other unknown substances labelled A to I.

### Reaction 1



#### Reaction 2



#### Reaction 3



[9]

TOTAL MARKS [20]

 A student obtained data based on the rate of reaction between magnesium metal and excess dilute hydrochloric acid. The experiment was carried out at 20°C.

The table shows the data obtained in the experiment.

| time/sec                                           | 0 | 20 | 40 | 60   | 80 | 100 | 120  | 140 | 160 |
|----------------------------------------------------|---|----|----|------|----|-----|------|-----|-----|
| volume of H <sub>2</sub> evolved / cm <sup>3</sup> | 0 | 19 | 33 | 45.5 | 55 | 62  | 67.5 | 70  | 70  |

- (a) (i) Plot a graph of volume against time. Label the graph A. [6]
  - (ii) Find the volume of hydrogen evolved at 28 seconds. [1]
  - (iii) State at what time 11.5 cm<sup>3</sup> of hydrogen is produced. [1]
- (b) Write a balanced equation for the reaction between magnesium and dilute hydrochloric acid. [2]
- (c) At r.t.p., calculate
  - (i) the total number of moles of gas produced in the reaction; [2]
  - (ii) the mass of magnesium that produced the final gas volume. [2]
- (d) Sketch carefully on the same axis, the graph obtained if only half of the mass of magnesium is changed. Label the graph B. [1]
- (e) Explain, in terms of particles, what would happen to the rate of the reaction if a higher concentration of hydrochloric acid is used. [2]
- (f) State what would happen to the initial rate of reaction and to the total volume of the gas given off, if the acid is heated to 40°C before the acid is added in the first investigation. [2]
- (g) Give ONE disadvantage of using hydrogen instead of helium in balloons. [1]

TOTAL MARKS [20]

| Question |       |
|----------|-------|
|          |       |
|          |       |
|          |       |
|          | 20000 |
|          |       |
|          |       |
|          |       |
|          |       |
|          |       |
|          |       |
|          |       |
|          | -     |
|          | _     |
| SE SES   | _     |
|          | -     |
|          | _     |
|          | -     |
|          | -     |
|          |       |
|          | -     |
|          |       |

| Question |                                         |           |            |   |   |              |
|----------|-----------------------------------------|-----------|------------|---|---|--------------|
|          |                                         |           |            |   |   | -            |
|          |                                         |           |            |   |   |              |
|          |                                         |           | -1.        |   |   |              |
|          |                                         |           |            |   |   |              |
|          |                                         |           | 7.6        |   |   |              |
|          |                                         | 100 000 0 |            |   |   |              |
|          |                                         |           |            |   |   |              |
|          |                                         |           |            |   |   |              |
|          |                                         |           |            |   |   |              |
|          |                                         |           |            |   |   |              |
|          |                                         |           |            |   |   | ======       |
|          |                                         |           |            |   |   | -            |
|          | -                                       |           |            |   |   |              |
|          |                                         |           |            |   |   |              |
|          |                                         |           |            |   | - | =            |
|          |                                         |           |            |   |   |              |
|          |                                         |           |            |   |   |              |
|          |                                         |           | 15-28-2-30 |   |   | THE STATE OF |
|          |                                         |           | -          |   |   |              |
|          |                                         |           |            |   | - | _            |
|          |                                         |           |            |   |   |              |
|          |                                         |           |            |   |   |              |
|          |                                         |           |            |   |   |              |
|          |                                         |           |            |   |   | -            |
|          |                                         |           |            |   |   | *****        |
|          | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 450       |            | _ |   | -11162       |

| Write on both sides of the paper |                       |  |  |  |
|----------------------------------|-----------------------|--|--|--|
|                                  |                       |  |  |  |
|                                  | <del>Zena de la</del> |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
| 2                                |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  | 5045                  |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |
|                                  |                       |  |  |  |

[Turn over

| Question |             |  |  |  |
|----------|-------------|--|--|--|
|          |             |  |  |  |
|          |             |  |  |  |
|          |             |  |  |  |
|          |             |  |  |  |
|          |             |  |  |  |
|          | <del></del> |  |  |  |
|          |             |  |  |  |
|          |             |  |  |  |
|          |             |  |  |  |
|          |             |  |  |  |
|          |             |  |  |  |
|          |             |  |  |  |
|          |             |  |  |  |
|          |             |  |  |  |
|          |             |  |  |  |
|          |             |  |  |  |
|          |             |  |  |  |
|          |             |  |  |  |
|          |             |  |  |  |