|) | | | |---|----------------------|------------------| | | Surname and Initials | School Number | | | | Candidate Number | | | |] | ## COMBINED SCIENCE PAPER 2 3102/2 Wednesday 27 MAY 2015 1:3 **LUID** 1:30 P.M.-3:00 P.M. No additional materials required ## MINISTRY OF EDUCATION NATIONAL EXAMINATIONS BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION ## INSTRUCTIONS TO CANDIDATES Do not open this booklet until you are told to do so. question booklet. Write your school number, candidate number, surname and initials in the space provided on this Answer ALL questions on this paper in the spaces provided starting your answer. Read each question carefully and make sure you know what you have been asked to do before The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 2. Calculators are permitted, however **NO** graphing calculators are allowed. | | TOTAL | |--------------------|-------| | | 8 | | ů . | 7 | | | 6 | | | 5 | | | 4 | | | 3 | | | 2 | | | 1 | | For Examiner's Use | For E | | | | This question paper consists of <u>17</u> printed pages and <u>3</u> blank pages. 11. ## The Periodic Table of the Elements | 186 | | | | | | Th | e Period | lic Table | of the E | lements | <u> </u> | | | | | | | |--|----------------------------|--------------------------|----------------------------|-----------------------|----------------------------|-----------------------------------|---------------------------|----------------------|-----------------------------|--------------------------------|-------------------------------|-----------------------------|------------------------------------|-----------------------------|-------------------------------------|---------------------------------|------------------------| | | | | | | | | | Gro | ujp | | | 111 | IV | V | VI | VII | 0 | | ı | II | | | | | | 1
H
Hydrogen | | | | | 1 | | <u> </u> | | · | 4
He
Helium
2 | | 7
Li | 9
Be | | | | | | 1 | | | | | 11
B
Boron | 12
C
Carbon | 14
N
Nitrogen
7 | 16
O
Oxygen
8 | 19
F
Fluorine
9 | 20
Ne
Neon | | 23
Na | Beryfium 4 24 Mg | | | | | | | | | | | 27
Al
Aluminium
13 | 28
Si
Silicon | 31
P
Phosphorus
15 | 32
S
Sulphur
16 | 35.5
CI
Chlorine
17 | 40
Ar
Argon | | Sodium
11
39
K | Magnesium 12 40 Ca Calcium | 45
SC
Scandium | 48
Ti
Titanium | 51
V
Vanadium | 52
Cr
Chromium | 55
Mn
Manganese | 56
Fe
Iron | 59
CO
Cobelt | 59
Ni
Nickel
28 | 64
Cu
Copper | 65
Zn
Zinc
30 | 70
Ga
Gaffium
31 | 73
Ge
Germanium
32 | 75
As
Arsenic
33 | 79
Se
Selenium
34 | Br
Bromine
35 | Kr
Kryptor
36 | | Potassium
19
85
Rb | 88 Sr
Strontium | 21
89
Y
Yttrium | 91
Zr
Zirconium | 93
Nb
Niobium | 96
Mo
Molybdenum | TC Technetium | 101
Ru
Ruthenium | 103
Rh
Rhodium | 106
Pd
Patadium | 108
Ag
Silver | 112
Cd
Cedmium
48 | 115
In
Indium
49 | 119
Sn
Tin | Sb
Antimony | 128
Te
Tellurium
52 | I 127 I lodine 53 | Xe
Xenon
54 | | Rubidium
37
133
Cs
Caesium | 137
Ba
Barium | 139
La
Lenthanum | 178
Hf
Hafnium
72 | 181
Ta
Tantalum | 184
W
Tungsten
74 | 186
Re
Rhenium
75 | 190
Os
Osmium
76 | 192
Ir
tridium | 195
Pt
Platinum
78 | 197
Au
Gold
79 | 201
Hg
Mercury
80 | 204
TI
Thatlium
81 | 207
Pb
Lead
82 | 209
Bi
Bismuth
83 | Po
Polonium
84 | At
Assatine
85 | Rr
Rado
86 | | Fr | 226
Ra | 227
Ac | | <u> </u> | | | | | | | | | | | Š. | | | | Francium
87 | Radium
88 | Actinium
89 | t | | 141 | 144 | | 150 | 152 | 157 | 159 | 162 | 165 | 167 | 169
Tm | 173
Vb | 17 | *58-71 Lanthanoid series †90-103 Actinoid series Key a = relative atomic mass X = atomic symbol | ſ | | | 144 | | 150 | 152 | 157 | 159 | 162 | 165 | 167 | 169 | 173
Yb | 175 | |----|---------------------|---------------------------|-----------------|------------------|-----------------|----------------------|------------------------|---------------------|------------------------|---------------------|--------------------|---------------------|------------------|----------------------| | | 140
Ce
Cerium | 141
Pr
Praseodymium | Nd
Neodymium | Pm
Promethium | Sm
Samarium | Eu
Europium
63 | Gd
Gadolinium
64 | Tb
Terbium
65 | Dy
Dysprosium
66 | Ho
Holmium
67 | Er
Erbium
68 | Tm
Thufium
69 | Ytterbium
70 | LU
Lutetium
71 | | | 232
Th | 59
Pa | 238
U | Np | Pu | Am | Cm | Bk
Berkelium | Cf
Californium | Es
Einsteinium | Fm | Md
Mendelevium | No
Nobelium | Lr } | | er | Thorium | Protectinium
91 | Uranium
92 | Neptunium
93 | Plutonium
94 | 95 | 96 | 97 | 98 | 99 | 100 | 101 | 102 | 1 103 | The particles of matter are in constant, random motion. | [1] | | | | | | | |-----------------------|-----------------|------------------|--|----------|---|--| | ш (о)(і). | 6 8moco 81 vCII | | | | A manufacture of the control | | | in (1)(2) | e gacec given | liffusion of the | Explain the order of diffusion of the gases given in (L)(:) | (ii) | | | | slowest [1] | | | fastest | | | | | m fastest to slowest. | f diffusion fro | order of rate of | Arrange the gases in order of rate of diffusion from fastest to slowest. | (i) | | | | | 32 | O_2 | | oxygen | | | | | 28 | N ₂ | Ü | nitrogen | | | | | 44 | CO ₂ | carbon dioxide | carbon | | | | | 17 | NH_3 | nia | ammonia | | | | | r.m.m | formula | name of gas | | | | | [1] | ive molecular | and their relat | The table shows some gases and their relative molecular mass (r.m.m) | The tab | (b) | | | [2] | is used. | if cold water | State what happens if cold water is used. | (iii) | | | | [1] | | /ation in (a)(ii | Explain this observation in (a)(ii). | (ii) | | | | ur. | d after one ho | ld be observed | Suggest what would be observed after one hour. | (i) | | | | r. | of warm wate | ced in a glass | Some red candies were placed in a glass of warm water. | Some | (a) | | <u>©</u> The chart shows the basic changes in the states of matter. 1 and 4. Use the Kinetic Theory to explain the changes in state shown by arrows | | | 4 | | | |------------------|-----|---|-----|--| | | | | | | | TOTAL MARKS [10] | [2] | | [2] | | ? The diagram shows a section through a nephron. (a) $\widehat{\Xi}$ Name the process occurring at structure A. leaving the kidneys. State TWO differences in the content of the blood entering and $[\Xi]$ (ii) [2] | | | | (iii) | |-----|-----|-----------|--| | [2] | use | substance | Name ONE substance which is reabsorbed in B and state its use in the body. | **(3**) in an adult. The table shows the comparison between the daily intake and output of water | | | | • | |------------------------------|--------------------|------------------------------|--------| | daily intake/cm ³ | ke/cm ³ | daily output/cm ² | ıt/cm³ | | dany mi | INC) care | | 1 100 | | drinks | 1 500 | urine | 1 400 | | drinks | | | | | food | 700 | faeces | 130 | | 10001 | | | | | | 200 | sweat | 200 | | respiration | 100 | | | | | | exhaled air | 400 | | | | | | Use the data in the table to calculate \odot the average daily intake of water. Show your working; [2] | (iii)
Name | ; | |---|---| | (iii) Name the hormone which regulates the amount of water in the body. [1] [1] [1] [1] | the difference in the TOTAL intake and output of water. | <u>©</u> TOTAL MARKS [10] 3. The diagram shows an electrical circuit. (a) $\widehat{\Xi}$ Name and give the function of each electrical symbol shown. | | component | |---|------------| | | <u> </u> = | | | (A) | | | \$ | | 4 | ф | | | 4 | State what the arrows in the circuit indicate. (ii) [6] **(b)** The diagrams show two different electrical circuits. Name the types of electrical circuit shown by diagrams X and Y. | × | × | |-----|---| | [1] | | | | | <u>©</u> Name the type of electrical circuit used in household wiring and give a reason for your choice. | | reason | name | |-----|--------|------| | [1] | | [1] | TOTAL MARKS [10] 4. The diagram shows the male reproductive system. (a) Use the letters from the diagram to match each function with its structure. function | Give th | ₹ | (iv) | (iii) | (ii) | (i) | | |---|---------------------------------------|---|-----------------------|--------------------------|--|--------| | Give the letter of the structure which contains the testes. | organ enlarges when filled with blood | produces seminal fluid which contains sperm | produces testosterone | manufactures sperm cells | allows both urine and sperm to exit the body | | | | | | | | | 100001 | | | [5] | | | | | | <u>©</u> Briefly explain why the testes are located outside the body. **b** [2] [Turn over | | | (d) | |------------------|---|--| | | (ii) | Θ | | TOTAL MARKS [10] | State the effect of cutting this structure. | On the diagram, place an X on the structure where a surgeon would cut when performing a vasectomy. | | [2] | | | | | | 2 | n | | |---------------|--|-----------------------|-----------------------------------|---|------------------|---|---------------------------------------|----| | ions present | Write the names of TWO compounds which produce the ions present in the water at location B. | nds which j | O compou | Write the names of TWO in the water at location B. | te the nam | (iii) Wrii in th | · · · · · · · · · · · · · · · · · · · | | | | | | Suggest the likely colour change. | ikely colo | gest the l | Sug | | | | ocation C. | Drops of Universal Indicator are added to water from location C. | added to w | licator are | versal Inc | ps of Uni | (ii) Drc | | | | | Give the letter of the location where the water is acidic. | ere the wat | ocation wh | er of the l | e the lett | (i) Giv | | | | | 6.7 | 0.2 | 0.4 | 0.4 | 0.3 | D | | | | | 8.2 | 0 | 0.2 | 0.3 | 0.4 | С | | | | | 7.6 | 0.1 | 0 | 0.6 | 3.5 | В | | | | | 7.1 | 3.0 | 3.5 | 3.4 | 5.1 | Α | | | | | pН | NO ₃ - | SO_4^{2-} | Na+ | Ca ²⁺ | | | | | | | sent | percentage of ions present | centage (| peı | location | | | | mation on | The quality of drinking water can vary. The table gives information on the percentage of ions found in drinking water from four locations. | The table er from fou | can vary. | cing water
ound in dr | of drink | The quality percentage | (b) | | | | | | | treated with chlorine. | eated witl | (ii) tr | | | | | | | | | filtered; | (i) fi | | | | | | | | is | hy water | Explain why water is | (a) | | | so that it is | th chlorine | treated wi | filtered and | ce and is: | ant resou | Water is an important resource and is filtered and treated with chlorine so that it is safe to use. | Water i to use. | 5. | | TOTAL MARKS [10] | |--| | positive result [2] | | | | test | | (c) Describe the test and its positive results which shows that a sample of water is pure. | | reason[1] | | location[1] | | (iv) Give the location where the water is most likely to be polluted by fertiliser. Give a reason for your choice. | 6. This question is about bonding. | | | | | | | | | (b) | | | | | (a) | |-----|--|-----|---|---|---------------|---------|--|--|----------------------|--|-----|--|---| | | (iii) | | (ii) | (i) | ator | | These | The tal | (iii) | (ii) | | (i) | Elen
is fo | | | Name the type of bond formed between S and chlorine. | | Draw a dot and cross diagram using only the outer electrons to show the bonding between element S and chlorine. | Identify the element which is the least chemically reactive | atomic number | element | These letters are not the symbols of the elements. | The table gives information about FOIID clamate n O n | Write a pos X and Y. | Name the typ | | Draw a dot at the bonding | Element \mathbf{X} is found in group IV and is a solid at roon is found in group I and is a gas at room temperature. | | | of bond form | | l cross diagra
tween eleme | ement which | 7 | P | the symbols | ation about I | possible formula | e of bond fo | | and cross diag | n group IV annd is a gas at | | | ed between S | | m using only
nt S and chlor | is the least cl | 8 | Q | of the elemer | | for the | Name the type of bond formed between ${f X}$ and ${f Y}$. | | Draw a dot and cross diagram using on the bonding formed between X and Y . | nd is a solid at
room tempera | | | and chlorine. | | the outer electine. | nemically reac | 10 | R | nts. | | compound formed | ${f X}$ and ${f Y}$. | | ly the outer el | room temper
ature. | | [1] | The state of s | [2] | trons to show | • | 11 | Ø | ÿ | [1] | rmed between | 3 | [2] | Draw a dot and cross diagram using only the outer electrons to show the bonding formed between ${\bf X}$ and ${\bf Y}$. | Element ${f X}$ is found in group IV and is a solid at room temperature Element ${f Y}$ is found in group I and is a gas at room temperature. | | | | ĬŸ) | |------------------|-----|--| | TOTAL MARKS [10] | [2] | In terms of electron transfer explain what happens when ${\bf S}$ bonds with chlorine. | 7. The diagram shows cells in a sample of human blood. (a) $\widehat{\Xi}$ State the name of the fluid part of blood. (ii) State the function of cell S. [1] (iii) Describe ONE way in which cell S is adapted for its function. | [2] | | | 2 : | |--|--|---|----------------------| | Apart from exercise, give TWO other factors which may decrease a person's risk of coronary heart disease. | TWO other factors whicease. | Apart from exercise, give TW risk of coronary heart disease. | Apart frrrisk of c | | [1] | | | | | f exercise on heartbeat. | Explain and give a reason for the effect of exercise on heartbeat. | Explain and give | (ii) | | [1] | | | | | HREE exercises. | Calculate the average heartbeat for the THREE exercises. | Calculate the ave | (i) | | Company | 90 | running | | | | 55 | walking | | | | 77 | jogging | | | | heartbeat
(per minute) | activities | | | A student performs a series of exercises to determine his fitness. The results are recorded in the table. | s of exercises to determi | A student performs a serie are recorded in the table. | A student are record | | [1] | | | | | | | 7 | - I | | | | Q | | | [1] | | | ı | | | | | P | | microorganisms. | tures 1, &, man r | microorganisms. | (1V) | | the human body against | times P O and K protect | lain how etruci | | ∞ The diagram shows the dimensions of a glass tank with water. (a) Ξ Calculate the volume of water in the tank. Show all working. A stone on a piece of string is lowered into the water in the tank [2] (Ξ) volume of water and the stone together. until it is completely covered. The water rises to 8 cm. Calculate the (iii) Find the volume of the stone. **(b)** The stone has a mass of 64 g, what is its density in kg? <u>o</u> is let go. Give a reason for your answer. The density of water is 1.0 g/cm³. State what happens to the stone if the string [2] [1] [2] **a** Why does ice float? TOTAL MARKS [10] [2] BLANK PAGE]