BAHAMAS JUNIOR CERTIFICATE

044 MATHEMATICS

SYLLABUS 2003

MINISTRY OF EDUCATION, YOUTH & SPORTS THE TESTING & EVALUATION SECTION

BAHAMAS JUNIOR CERTIFICATE 0044 MATHEMATICS 2003

- The Bahamas Junior Certificate Examination in Mathematics will consist of two papers.
- Both papers are to be written.
 - ALL questions are to be answered in the spaces provided on the question papers.
- NO CALCULATORS WILL BE ALLOWED.
 - ALL working is to be done in **BLACK OR BLUE INK** with the exception of constructions and lines, which may be done with a **pencil**.
- Show ALL necessary working.

DETAILS OF THE EXAMINATION COMPONENTS

Paper Number	Duration	Weighting	Structure
ONÉ	1 hour	40%	Short answer questions requiring little working. The content is taken from the entire syllabus.
TWO	2 hours	60%	More structured type questions of a more complex nature than those in paper one. ALL questions are to be answered.

GRADES AVAILABLE ARE A - G.

The Candidates should be able to:

- 1. recall, apply and interpret mathematical knowledge in the context of everyday situations;
- set out mathematical work, including the solution of problems, in a logical and clear form, using the appropriate symbols and terminology;
- organize, interpret and present information accurately in written, tabular, graphical and diagrammatical forms;
- 4. perform calculations by suitable methods;
- 5. understand systems of measurement in everyday use and to make use of them in the solution of problems;
- 6. estimate, approximate, and work to degrees of accuracy appropriate to the context;
- 7. use mathematical and other instruments to measure and to draw to an acceptable degree of accuracy;
- 8. recognize patterns and structures in a variety of situations, and form generalizations;
- 9. interpret, transform and make appropriate use of mathematical statements expressed in words or symbols;
- 10. recognize and use spatial relationships in two and three dimensions, particularly in solving problems;
- analyze a problem, select a suitable strategy and apply an appropriate technique to obtain its solution;
- 12. apply combinations of mathematical skills and techniques in problem solving;
- 13. make logical deductions from given mathematical data;
- 14. respond to a problem relating to a relatively unstructured situation by translating it into an approximately structured form;
- 15. understand and apply basic concepts of probability;
- select and use basic statistical methods to analyze data;
- 17. use the language of mathematics to express mathematical ideas precisely;
- 18. apply limited use of transformations and symmetry to analyze mathematical situations:
- 19. show mathematical achievement through continuous assessment.

	TOPICS	NOTES
la.	Whole numbers (odd, even, prime, squares,	Read and write numbers in exponential form.
	cubes, factors, multiples, square roots, indices)	Know the symbols indicating square and cube roots
	square roots, marcos)	Calculate roots up to 400 without a calculator.
		• Cube roots up to 1,000.
b.	Number patterns and sequences	Recognize simple number patterns e.g. squares, cubes, triangular numbers. Pattern will be easily defined.
2a.	Vulgar and decimal fractions and	Express an improper fraction as a mixed number and vice versa.
	percentages.	Convert to a percentage
		Equivalent fractions
	4	Vulgar fractions to decimal fractions
b.	Percentage of a sum of money.	
Ċ.	Express one quantity as a percentage of another.	E.g. Express 48 minutes as a percentage of one hour.
3a.	The four rules applied to whole numbers, decimals	 Denominators will only have one significant digit except for equivalent fractions.
	and fractions.	Decimal fractions will involve up to three places of decimals.
b.	Language and notation of simple vulgar fractions in appropriate contexts	 Addition, subtraction, multiplication and division of fractions, whole numbers and fractions and mixed numbers.

Use in practical situations e.g. temperature and tide level. Simple financial loss/gain. Four rules of integers.
Ratio expressed in the form a to 1 or 1 to a. (A is a whole number). Simple ratios. Notation a: b will be used. The notion of unit pricing.
Approximate to two decimal places. Estimate +, -, x, and ÷ for whole numbers, decimals, fractions and percentages. Approximate to a given number of significant figures for any decimal number n, where 1 < n < 100.
n(A) Number of elements in set A. is an element of is not an element of A' Complement of set A Empty set Universal set A ⊂ B. A is a subset of B A ← B A is not a subset of B A ← B A union B A ∩ B A intersect B. Equivalent Sets VE: Two sets using Venn diagrams
A∩B ↔ VŒ:

 Use metric units as well as the corresponding Imperial units.
 Expression of compound units e.g. km/hr.
Elapse time
Do simple conversions.
Personal and household finance.
 Hire purchase, interest, taxation, discount, loans, wages, salaries, profit and loss.
Reading of graphs, clocks and dials.
Use charts and tables
Simple interest and Amount only
Average speed
Budgets
Recognize, draw, complete shape about a line of symmetry.
 Including compound shapes made up of rectangles, triangles, parallelograms, trapezium and circles.
Work with border regions
Recognize the difference between cube and cuboid
Recognize basic solids

11a. The classification of statistical data. Reading, interpreting and making simple inference from tables and statistical diagrams.	
b. Measure of central tendency.	The mean, mode and median of individual and discrete data.
c. Probability	 Calculate the probability of dependent and independent events.
	Calculate the probability of an event happening.
	 Express probabilities either as fractions, decimals or percentages.
12. Ordering by magnitude	 Use <, > and = to order numbers, fractions, decimals and percentages.
13a. The use of letter for generalized numbers.b. Substitution of numbers for words and letters in formulae.	Read and write inequality statements. Show inequalities on a number line.
c. Solution of linear equations in one unknown.	Simplify expressions with or without brackets.
14a. Cartesian co-ordinate in two dimensions.	 Plotting given points and reading from graphs. (Scales will be given) Shading simple regions.
b. Interpretation of graphs in relevant situations.	Travel graphs, conversion graphs.

• Point, lines, (straight, segment, ray, parallel, oblique,
Pright angle, acute angle, obtuse angle, straight angle,
reflex angle, perpendicular angles, vertically opposite, adjacent, corresponding, exterior, interior, angles at a point, revolution.
Angles formed by parallel lines
 Isosceles, equilateral, acute-angled, obtuse-angled, right-angled, scalene, right-angled isosceles.
 Square, rhombus, rectangle, trapezium, parallelogram, kite.
 Radius, circumference, diameter, chord, arc, diameter, sector, segment, radii.
 Use information on angles and angle properties of triangles and quadrilateral to calculate unknown angles.
Exterior angles of a triangle.
Use a 30cm ruler or a 12 inches ruler to measure or draw lines.
Use a protractor to measure or draw angles.
• Angles of 60°, 90°
Bisection of angles
Bisection of lines
Triangles being given (i). three sides, (ii). 1 side and two angles or (iii). 2 sides and the included angle.

20. Transformations.	•	Simple figures to be reflected horizontal or vertical lines
	٠	Identify translations, rotations and reflections as examples of transformation geometry.

Ministry of Education, Youth & Sports The Testing & Evaluation Section

ERRATUM

Please add to the Bahamas Junior Certificate (BJC) Syllabus 2003, the following assessment objective:

Objective # 19:

show mathematical achievement through continuous assessment.