School Number	Candidate Number			
Surname and Initials				

CHEMISTRY

PAPER 2 3051/2

Tuesday

19 MAY 2015

1:30-3:00 P.M.

Additional materials: None

MINISTRY OF EDUCATION NATIONAL EXAMINATIONS

BAHAMAS GENERAL CERTIFICATE OF SECONDARY EDUCATION

INSTRUCTIONS AND INFORMATION TO CANDIDATES

Do not open this booklet until you are told to do so.

Write your school number, candidate number, surname and initials in the spaces provided above.

Answer ALL the questions on this paper.

Read each question carefully and make sure you know what you have been asked to do before starting your answer.

The instruction NAME . . . requires an answer in words NOT chemical symbols.

Show **ALL** your working when answering numerical questions. Lines are provided on the question paper for your answers. You should write your answers on these lines only.

A copy of the Periodic Table is provided on page 2.

The mark for each part question is given in brackets [].

FOR EXA	
1	
2	
3	
4	
5	
6	
7	e e
8	
TOTAL	

This question paper consists of 15 printed pages and 1 blank page.

				72.0	100		1	1		1
	0	February Helby	Ne Ne	10 A 40	28 X X 2010	Xe Xe	Rn		Lu Lutebon	נ
			19 Fronse	CC CL	Br Br Browner	127 129 10dne	At At 85		Yb Warner	
	5		16 Orpen			128 Te Tehrum	Po Potentum		Tm Twen	PW
	>		Z Z	7 31 Possitions			209 Bi Bismuth 83		Er Er	E
	≥		c O g	S. Si. Si. Si. Si. Si. Si. Si. Si. Si. S	73 Ge	Sn Sn	207 Pb		165 Ho Holmium	Es
	E		= B &	A AI AI AI 13	Ga Gaffern 31	IIS Indum	204 TI		162 Dy Orspession 66	
					55 Zn 30 2mc	Cd Codmium Cadmium	Hg Mercuy		159 Terbium	1
					Cu Copper	Ag Sher	197 Au Gold		157 Gd Gedefnium 64	
Group				\$	S9 Neter	106 Pd Paradium 46	Pt Pt Parronn 78		Eu Europhm 63	Am
Ö		W	1		CO Coe.	Rh Rhodem	192 Ir 1166um 77		Sm Smerlum Semerlum	Pd
		H Hydrogen			26 Fe	Ru Ruthenium	190 OS minne 76	-	Pm Promethism 61	δ.
					SS Mn Menganesa 25	Tc Technetium	186 Re Rhenium 75		Nd Neodmium 80	8 D
-					Cr Operation	Mo Motodenim 42	184 W Tungsten 74		141 Pr Prasendymium 59	Pa
					51 V Vanedum 23	No. No.	Ta Tandum		Ce Cerem	ä E
200					48 TT Tanahan 22	Zr Zrcontum 40	Hf Hahium 772	- 1		mic mass nbol
					SC Scandon 21	39 ⊀ 39	La Landanum 57	Activity t	d series series	a = relative atomic mass X = atomic symbol
	=		Be Benferm	Mg Magnesism 12	Ca Cateum	Sreenfum 38	Ba Bartan Se Bartan	Ra Radom	*58-71 Lanthanoid series 190-103 Actinoid series	• ×
	-		- I &	Na Na Sodem	33 K Potassium 19	Rb Medem	E S S	Francium 87	58-71 L 90-103	Key

585

1.	Use the	e Periodio	c Table on page 2 to answer this question.	
	(a)	(i)	Name the element with the symbol Pd.	[1]
		(ii)	State the proton number of the element Ba.	[1]
		(iii)	Name the first element with more than 21 neutrons.	
		(iv)	Write the atomic symbol of the most	[1]
		()	reactive halogen.	
		2.5		[1]
		(v)	Name the element with an electronic configuration of 2,8,3.	
				[1]
		(vi)	Calculate the number of neutrons in element Y.	9
				[1]
		(vii)	Name the element found in Group IV, Period 3.	
		2 1111		[1]
		(viii)	State the total number of electrons in the Ca ²⁺ ion.	
				[1]
	(b)	Draw a	dot and cross diagram to show the bonding	in K ₂ S.Only the outer

[2]

2. Cars are equipped with air bags that prevent both the driver and passenger from being injured in an accident.

(a)	(i)	The gas that is used to inflate the air bag makes up 78% of the
		atmosphere. State the name of this gas.

(ii)	Use kinetic theory to write TWO statements describing the movement and spacing of the gas molecules in the air bag.
	test sees — at introduces substituted and applications of the second

		e air bag inflates.	
	(元)	9	
-			

__ [2

_ [1]

[2]

(b)	(i)	State the name of the scientist who discovered the relationship
		between volume and pressure for a fixed mass of gas at a constant
		temperature.

_____[],

(ii) Write a mathematical equation to show the relationship described in (b)(i).

[1]

(iii) Label the axis and sketch a graph which illustrates the relationship named in (b)(i).

[1]

(iv) The volume of an inflated air bag is 20 L at 1 atm. After a collision, the volume of the air bag is reduced to 10 L.

Calculate the collision pressure. Assume that temperature and the amount of the gas remain constant.

[2]

3. The diagrams show

pparatus used to separate different mixtures.

(a)

diagram A

State the name of the process shown in diagram A.	
Explain why apparatus shown in diagram A is NOT	quitab
separating a mixture of ethanol and water.	Sultabl
9	
Suggest a suitable method for separating these liquids and water.	into eth

diagram B

(i	State the type of mixtures the apparatus shown used to separate.	n in diagram B can be
	W.	[1]
(i	or diagram B.	
		[1]
(i)	Define the term mixture.	
		[2]
(ii	Name the two parts of a solution.	
	1	
	2	[2]
Na	me a method which separates Fe from Fe ₂ O ₃ .	
-		

TOTAL MARKS [10]

4.	To pr	roduce ox resence o	ygen gas in the f manganese d	laboratory, a scientist decomposes hydrogen peroxide	in
	(a)	(i)		rpose of the manganese dioxide in the reaction.	
		7 **\	0.1		17
		(ii)	Other than peroxide de	oxygen, name the product formed when hydroge ecomposes.	n
		(iii)	Briefly des	cribe a method used to collect the oxygen gas as it	
			-	[1	(7)
	Oxyg form	en is a re oxides. M	active gas fou letal oxides for	nd in air. Oxygen reacts with metals and non-metals tund within the Earth's crust are called ores.	0
	(b)	(i)	What perce	ntage of the volume of dry air contains oxygen?	
		(ii)	Define the t	[1 erm <i>ore</i> .]
					- 11
				[2]
		(iii)	Name the or	re that is used to make steel.	
	Oxide	es can be o	classified as ac	idic, amphoteric, basic or neutral oxide.]
	(c)			y filling in each oxide's classification.	
		nan	ne of oxide	oxide classification	1
		calciu	ım oxide		
		sulfur	trioxide		
		zinc c	oxide		
				[3]]

5.	Aspirin (acetylsalicylic acid) is an analgesic drug L n is widely used throughout world.						
	(a)	(i)	Define the term analgesic.				
				[1]			
		(ii)	Name one possible harmful side effect of using aspirin.				
		8 8 ¹² C		[1]			
	Aspir	in is mad	le by an esterification reaction.				
	(b)	(i)	Define the term ester.				
				[1]			
		(ii)	Complete the word equation for an esterification reaction.				
			carboxylic acid — ester +	_ [2]			
	Salicy as a c	ylic acid i arboxylic	is the name of the acid used to make aspirin. Salicylic acid is cla acid.	ssified			
	The d	liagram sl	hows the structural formula of salicylic acid.				
	(c)	(i)	Write the functional group of a carboxylic acid.				
))	[1]			

585123

	(ii)	Write the molecular formula of salicylic acid.	
			[1]
	(iii)	Calculate the relative molecular mass of salicylic acid.	
		(Ar: C = 12, O = 16, H = 1)	
		a a	[1]
Carbo produc	xylic aci cts. Ethar	ds are weak organic acids that can be found in common ho noic acid is an example of a common household carboxylic acid	ousehold d.
(d)	Name	the reactants needed to form ethanoic acid.	
	1		
	2		[2]
		TOTAL MAR	KS [10]

6.	The eq	uations s	show some reactions of acids with water.
	Reaction HCl(aq		$H_2O(I) \longrightarrow H_3O^+ + Cl^-(aq)$
	Reaction CH ₃ CO	on B OOH(aq)	+ $H_2O(1) \rightleftharpoons H_3O^+(aq) + CH_3COO^-(aq)$
	(a)	(i)	State which reaction shows a strong acid reacting with water.
			[1]
		(ii)	State what difference in reaction A and B indicates that your answer to (a)(i) is a strong acid.
			[1]
		(iii)	In reaction B would you expect to find more CH ₃ COOH molecules or H ₃ O ⁺ ions?
			[1]
	(b)	A soluti of 2 mo	on of Ca(OH) ₂ of 1 mol dm ⁻³ concentration and a solution of NaOH dm ⁻³ concentration have the same concentration of negative ions.
		Explain	this statement.
	¥	91	
			[1]
	(c)	A studen gas were	at added 3.25 g of powdered zinc to excess sulfuric acid. Bubbles of observed during the reaction. The zinc disappeared rapidly.
	((i)	Write the word equation for the reaction.
		ä	++
	(ii)	Give the test and the positive result to identify the gas made in (c)(i).
*			test[1]
		1	result[1]

Calculate the number of mo	oles in 3.25 g of zinc metal.
tate the pH value for the ex	ccessive sulfuric acid used in

7. The diagram represents a Down's cell showing the commercial electrolysis of NaCl.

(a)	On th	e diagram label the anode and cathode.	[2]
(b)	(i)	Give a reason why the NaCl must be in the molten state.	
	(ii)	Write the chemical symbols of the ions present in the electrolyte	. [1] e.
	(iii)	Name the products produced at X and Y.	[1]
		X	
		Y	[2]
	(iv)	State why the two products formed must be kept separate from eother.	ach
			[1]

	tests are often used to identify cations such as sodium.	
(i)	Describe the results of a flame test performed on NaCl.	
	[]	1]
(ii)	Name a green gas that can bleach damp litmus paper.	
	[1	1]
(iii)	Name an element in the same Group as sodium which can displace sodium from sodium chloride.	e
	[1	[]
(iii)	Name an element in the same Group as sodium which can displate sodium from sodium chloride.	- ac

8.	An in Once	dustrial pr the iron h	ocess is needed to create the amount of iron used to construct building as been produced we must find a way to protect the metal.
	(a)	(i)	Name the industrial process that produces pig iron.
		(ii)	Name the form of carbon used in this process.
		(iii)	Name the solid by-product produced as the iron is being made.
	(b)	One of	The reactions taking the second secon
	(0)		the reactions taking place as iron is being made is shown below.
		Fe ₂ O ₃	+ 3CO — Fe +CO ₂
		(i)	Balance the equation by filling in the blanks. [2
		(ii)	State the oxidation number assigned to Fe.
			. [1
		(iii)	Name the substance that acts as the reducing agent in the equation.
		2794 \$ 000 \$ 00	[1]
		(iv)	State the change in the number of electrons for each oxygen ion.
			[1]
	(c)	(i)	State how iron pipes and fences can be prevented from rusting.
			[1]
		(ii)	Other than the method mentioned in (c)(i), state how the hull of a large ship can be prevented from corroding.
			[I]
			TOTAL MARKS [10]

585123

																				,
The second secon													**	40	•					
The second secon																				
2007																				
					=															
The state of the s								*	v)		1									31
100										3 . 7							ig.	*	*	3 1 1
																808				F
- THE						*														
THE RESERVE THE PERSON NAMED IN																				
THE PERSON NAMED IN COLUMN																				_ [